Peat soil treatment using hydrogen peroxide and its adsorption towards potassium ion (K+) in aqueous solution

Galuh Yuliani, Suci Karina, Mita Nurhayati, Siska Mutiara, Mamun Mollah, Shangeetha Ganesan

Abstract

Peat soil contains functional groups such as carboxylic acid and hydroxyls that bind metal ions and organic compounds in solution. However, the adsorption capacity of natural peat soil is still considered low. Therefore, this study aims to alter the peat surface using a hydrogen peroxide solution and to utilize the resulting peat as an adsorbent for K+ ions in an aqueous solution. Peat soil was treated with a 10% hydrogen peroxide solution for 30 minutes. The infrared spectra of the treated peat indicated an increase in the intensity of hydroxyl groups (-OH) at 3400 cm-1 and a sharp increase in carboxylic groups (-COOH) at 1700 cm-1. SEM photos showed that the porosity of the treated peat was higher, probably due to oxidation reactions that resulted in new pores on the surface, and BET analysis confirmed the increase in surface area upon treatment. During the adsorption experiment, the residual concentrations of K+ ions were determined using AAS. The adsorption capacities of raw and treated peat were 37.40 mg g-1 and 59.53 mg g-1, respectively. When fitted using Langmuir and Freundlich adsorption isotherm models, the adsorption data plots followed the Freundlich isotherm model, indicating reversible adsorption on heterogeneous surfaces. The Density Functional Theory (DFT) calculation showed that the interaction energy between peat soil and K+ ions was lower after treatment, indicating that K+ ions bind to exchange sites on the treated peat soil.

Keywords

Peat soil; Hydrogen peroxide; Adsorption; Potassium; Freundlich isotherm

Full Text:

PDF

References

Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., . . . Husnain. (2021). Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 402, 115235. https://doi.org/10.1016/j.geoderma.2021.115235

Ansone-Bertina, L., & Klavins, M. (2016). Sorption of V and VI group metalloids (As, Sb, Te) on modified peat sorbents. Open Chemistry, 14(1), 46-59. https://doi.org/10.1515/chem-2016-0003

Awgchew, H., Beyene, S., & Kifilu, A. (2024). Potassium adsorption capacity and desorption kinetics in soils of Qenberenaweti sub-watershed, central highlands of Ethiopia. Heliyon, 10(10), e31336. https://doi.org/10.1016/j.heliyon.2024.e31336

Azmi, I. A., & Kassim, N. Q. B. (2022). Changes in soil microstructure and physical characteristics of peat soils under pineapple plantation. IOP Conference Series: Earth and Environmental Science, 1059(1), 012027. https://doi.org/10.1088/1755-1315/1059/1/012027

Bangroo, S., Mushtaq, A., Tahir, A., Malik, M., Kirmani, N., Sofi, J., & Rasool, F.-u. (2012). Potassium adsorption characteristics of soils under long term maize-legume cropping sequence. African Journal of Agricultural Research, 7(48), 6502-6507. https://doi.org/10.5897/AJAR12.1751

Binner, I., Dultz, S., Schellhorn, M., & Schenk, M. K. (2017). Potassium adsorption and release properties of clays in peat-based horticultural substrates for increasing the cultivation safety of plants. Applied Clay Science, 145, 28-36. https://doi.org/10.1016/j.clay.2017.05.013

Burek, B. O., Bormann, S., Hollmann, F., Bloh, J. Z., & Holtmann, D. (2019). Hydrogen peroxide driven biocatalysis [10.1039/C9GC00633H]. Green Chemistry, 21(12), 3232-3249. https://doi.org/10.1039/C9GC00633H

Bustin, R. M., & Lowe, L. E. (1987). Sulphur, low temperature ash and minor elements in humid–temperate peat of the Fraser River Delta, British Columbia. Journal of the Geological Society, 144(3), 435-450. https://doi.org/10.1144/gsjgs.144.3.0435

Caramalău, C., Bulgariu, L., & Macoveanu, M. (2009). Cobalt (II) removal from aqueous solutions by adsorption on modified peat moss. Chemical Bulletin of “Politehnica” University of Timisoara, 54(68), 13-17. https://www.researchgate.net/publication/237483319_Cobalt_II_Removal_from_Aqueous_Solutions_by_Adsorption_on_Modified_Peat_Moss

Carrillo Zenteno, M. D., de Freitas, R. C. A., Fernandes, R. B. A., Fontes, M. P. F., & Jordão, C. P. (2013). Sorption of Cadmium in Some Soil Amendments for In Situ Recovery of Contaminated Soils. Water, Air, & Soil Pollution, 224(2), 1418. https://doi.org/10.1007/s11270-012-1418-8

Cocozza, C., D'Orazio, V., Miano, T. M., & Shotyk, W. (2003). Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Organic Geochemistry, 34(1), 49-60. https://doi.org/10.1016/S0146-6380(02)00208-5

Detho, A., Rosli, M. A., Ghazouani, N., Mabrouk, A., Elhag, A. B., Kadir, A. A., . . . Rassem, H. H. (2025). Potential of composite adsorbent comprising peat, limestone, zeolite, and activated carbon for the treatment of diffused soluble contaminants. Applied Water Science, 15(5), 88. https://doi.org/10.1007/s13201-025-02433-1

Efanov, M. V., Galochkin, A. I., & Chernenko, P. P. (2008). Preparation of sodium oxyhumates from peat. Solid Fuel Chemistry, 42(2), 82-85. https://doi.org/10.3103/S0361521908020055

Fu, W., Fan, J., Wang, S., Wang, H., Dai, Z., Zhao, X., & Hao, M. (2021). Woody peat addition increases soil organic matter but its mineralization is affected by soil clay in the four degenerated erodible soils. Agriculture, Ecosystems & Environment, 318, 107495. https://doi.org/10.1016/j.agee.2021.107495

Goi, A., Trapido, M., & Kulik, N. (2009). Contaminated soil remediation with hydrogen peroxide oxidation. World Academy of Science, Engineering and Technology, 52, 152-159. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=023b7ad63cec13788b923bf6e97a776b8935c926

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17

Heravi, M. M., Ghalavand, N., & Hashemi, E. (2020). Hydrogen Peroxide as a Green Oxidant for the Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols in Different Media: An Overview. Chemistry, 2(1), 101-178. https://doi.org/10.3390/chemistry2010010

Hou, R., Zhang, Y., Feng, H., Chen, Y., & Chen, H. (2020). Effects of sulfonated peat on Cr chemical fraction in soil and Cr uptake in Pak-choi. Journal of Environmental Chemical Engineering, 8(5), 104278. https://doi.org/10.1016/j.jece.2020.104278

Huat, B. B., Kazemian, S., Prasad, A., & Barghchi, M. (2011). State of an art review of peat: General perspective. International Journal of the Physical Sciences, 6(8), 1988-1996. https://academicjournals.org/journal/IJPS/article-stat/5E74F0C25540

Jaskūnas, A., Subačius, B., & Šlinkštienė, R. (2015). Adsorption of potassium ions on natural zeolite: Kinetic and equilibrium studies. Chemija, 26(2). https://doi.org/10.6001/chemija.2015.26.2.1

Kim, J.-H., Kim, S., & Park, Y.-S. (2023). Effects of a commercial whitening toothpaste containing hydrogen peroxide and citric acid on dentin abrasion and erosion. BMC Oral Health, 23(1), 619. https://doi.org/10.1186/s12903-023-03319-x

Kingston, G. (2013). Mineral Nutrition of Sugarcane. In Sugarcane: Physiology, Biochemistry, and Functional Biology (pp. 85-120). https://doi.org/10.1002/9781118771280.ch5

Kusuma, E. W. W., Maas, A., Utami, S. N. H., & Maftuah, E. (2021). Effects of rice husk biochar and raised bed on CO2 flux and shallot (Allium cepa L.) production on peatland. Sains Tanah Journal of Soil Science and Agroclimatology, 18(2), 159-165. https://doi.org/10.20961/stjssa.v18i2.47974

Medvedeva, M., Itkin, V., & Sirin, A. (2024). Identification of peat-fire-burnt areas among other wildfires using the peat fire index. International Journal of Applied Earth Observation and Geoinformation, 132, 103973. https://doi.org/10.1016/j.jag.2024.103973

Mello, S. C., Pereira, H. S., & Vitti, G. C. (2000). Open-access Efeitos de fertilizantes orgânicos na nutrição e produção do pimentão [Effects of organic manures on the nutrition and yield of pepper]. Horticultura Brasileira, 18, 200-203. https://doi.org/10.1590/S0102-05362000000300012

Melo, C. A., Karla, d. O. L., Fernandes, F. L., & and Rosa, A. H. (2018). Biosorption of macronutrients by Brazilian tropical peats. Communications in Soil Science and Plant Analysis, 49(12), 1530-1539. https://doi.org/10.1080/00103624.2018.1474474

Molamahmood, H. V., Qin, J., Zhu, Y., Deng, M., & Long, M. (2020). The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil. Chemosphere, 249, 126146. https://doi.org/10.1016/j.chemosphere.2020.126146

Murphy, O. P., Vashishtha, M., Palanisamy, P., & Kumar, K. V. (2023). A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time. ACS Omega, 8(20), 17407-17430. https://doi.org/10.1021/acsomega.2c08155

Musa, D. N. S., Afat, R. M., Gilbert, M. S., & Kamlun, K. U. (2020). Heat content and burning time of tropical peat. Borneo Science| The Journal of Science and Technology, 41(1). https://doi.org/10.51200/bsj.v41i1.4440

Neese, F. (2012). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73-78. https://doi.org/10.1002/wcms.81

Notodarmojo, S., Mahmud, & Larasati, A. (2017). Adsorption of natural organic matter (NOM) in peat water by local Indonesian tropical clay soils. GEOMATE Journal, 13(38), 111-119. https://geomatejournal.com/geomate/article/view/1455

Nurzakiah, S., Sutandi, A., Sabiham, S., Djajakirana, G., & Sudadi, U. (2020). Controls on the net dissolved organic carbon production in tropical peat. Sains Tanah Journal of Soil Science and Agroclimatology, 17(2), 161-169. https://doi.org/10.20961/stjssa.v17i2.45123

Nurzakiah, S., Wakhid, N., & Hairani, A. (2020). Carbon dioxide emission and peat hydrophobicity in tidal peatlands. Sains Tanah Journal of Soil Science and Agroclimatology, 17(1), 71-77. https://doi.org/10.20961/stjssa.v17i1.41153

Shi, W., Xu, C., & Liao, B. (2009). Pretreatment of peat using hydrogen peroxide for delignification. In IASTED International Conference on Environmental Management and Engineering, EME 2009 (pp. 15-19).

Shvartseva, O., Skripkina, T., Gaskova, O., & Podgorbunskikh, E. (2022). Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions. Water, 14(13), 2114. https://doi.org/10.3390/w14132114

Siahaan, P. (1998). Adsorpsi Ion Logam Natrium dan Kalium dengan Karbon Aktif Merck dan Norit. 1998, 1(1), 8. https://doi.org/10.14710/jksa.1.1.23-30

Steelink, C. (1985). Implications of elemental characteristics of humic substances. Humic substances in soil, sediment and water: geochemistry, isolation and characterization., 457–476. https://www.cabidigitallibrary.org/doi/full/10.5555/19861902284

Sudiono, S., Yuniarti, M., Siswanta, D., Kunarti, E. S., Triyono, T., & Santosa, S. J. (2017). The Role of Carboxyl and Hydroxyl Groups of Humic Acid in Removing AuCl 4-from Aqueous Solution. Indonesian Journal of Chemistry, 17(1), 95-104. https://doi.org/10.22146/ijc.23620

Sukarman, S., Sulaeman, Y., Yatno, E., Gani, R. A., & Minasny, B. (2024). Identification and characterization of peat soils using a physiographic approach at semi-detailed scale: a case study in Bangka Belitung Islands Province, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 21(2), 191-202. https://doi.org/10.20961/stjssa.v21i2.87573

Sun, Q. Y., Lu, P., & Yang, L. Z. (2004). The Adsorption of Lead and Copper from Aqueous Solution on Modified Peat–Resin Particles. Environmental Geochemistry and Health, 26(2), 311-317. https://doi.org/10.1023/B:EGAH.0000039595.12014.6b

Wüst, R. A. J., & Bustin, R. M. (2001). Low-ash peat deposits from a dendritic, intermontane basin in the tropics: a new model for good quality coals. International Journal of Coal Geology, 46(2), 179-206. https://doi.org/10.1016/S0166-5162(01)00021-0

Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., . . . Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366, 608-621. https://doi.org/10.1016/j.cej.2019.02.119

Yuliani, G., Grandistin, G. G., & Mursito, A. T. (2015). Karakterisasi adsorpsi batubara muda termodifikasi hidrogen peroksida menggunakan metode kontinyu terhadap metilen biru. Chimica et Natura Acta, 3(1). https://doi.org/10.24198/cna.v3.n1.9170

Yuliani, G., Noviyana, I., & Setiabudi, A. (2014). Enrichment of Indonesian low rank coal's surface oxygen compounds (SOCs) using hydrogen peroxide and its adsorptive properties. Advanced Materials Research, 896, 159-162. https://doi.org/10.4028/www.scientific.net/AMR.896.159

Zhang, A., & Li, Y. (2014). Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Science of The Total Environment, 493, 307-323. https://doi.org/10.1016/j.scitotenv.2014.05.149

Refbacks

  • There are currently no refbacks.