Metal absorption by pigweed and napier grass in biochar-treated soils

Abdul Kadir Salam, Deva Maharani Wirakrama, Kurnia Rahma Dani, Septi Nurul Aini, Hery Novpriansyah, Supriatin Supriatin

Abstract

Heavy metal absorption by plants is suggested to be affected by soil treatment with different types of biochar. Due to various types of available biochar materials in the environment, effects of three representative biochar types were evaluated in a greenhouse experiment using polluted soils planted with pigweed (Amaranthus spinosus L.) and napier grass (Pennisetum purpureum Schumach). Soil treatments were conducted with biochar of rice (Oryza sativa)-husk, corn (Zea mays)-cob and cassava (Manihot utilissima)-stem at 10 Mg ha-1. Soils and plants were analysed for Cu and Zn after a 4 weeks plant growth. The results showed that Cu and Zn accumulation by pigweed and napier grass were higher in soils polluted with more Cu and Zn. Pigweed in general acted as phytoextractor, accumulated more Cu and Zn in shoots, while napier grass as phyto-stabilizer, accumulated more Cu and Zn in roots. Pigweed accumulated Cu more effective than napier grass while napier grass more effective in Zn accumulation. Unlike rice-husk or corn-cob, cassava-stem biochar increased the soil Cu and Zn concentrations. Rice-husk and corn-cob enhanced but cassava-stem biochar decreased Cu and Zn accumulation by pigweed and napier grass. Rice-husk and corn-cob biochar showed better potential than cassava biochar for soil  Cu and Zn phytoremediation by pigweed and napier grass in heavy-metal polluted tropical soils.

Keywords

Copper; Phytoextraction; Phytoremediation; Polluted soils; Zinc

Full Text:

PDF

References

Afriyani, N. A., Durotussyifa, N., Nisa, U., Novpriansyah, H., Niswati, A., Sarno, & Salam, A. K. (2024). The Biochar-Enhanced Phytoextraction of Heavy-Metal-Polluted Tropical Soils by Thorny Amaranth (Amaranthus spinosus). IOP Conference Series: Earth and Environmental Science, 1362(1), 012009. https://doi.org/10.1088/1755-1315/1362/1/012009.

Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering & Management, 5(3), 56-66. https://doi.org/10.13140/RG.2.2.27583.87204.

Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., . . . Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. Journal of Environmental Management, 222, 76-85. https://doi.org/10.1016/j.jenvman.2018.05.004.

Chen, X. C., Huang, L., Chang, T. H. A., Ong, B. L., Ong, S. L., & Hu, J. (2019). Plant Traits for Phytoremediation in the Tropics. Engineering, 5(5), 841-848. https://doi.org/10.1016/j.eng.2019.07.019.

Dietz, S., Herz, K., Gorzolka, K., Jandt, U., Bruelheide, H., & Scheel, D. (2020). Root exudate composition of grass and forb species in natural grasslands. Scientific Reports, 10(1), 10691. https://doi.org/10.1038/s41598-019-54309-5.

dos Santos Martins, D. D., Serra, J. C. V., Zukowski Junior, J. C., & Pedroza, M. M. (2019). Efficiency of biochars in the removal of heavy metals. Acta Brasiliensis, 3(3), 131-138. https://doi.org/10.22571/2526-4338242.

Ghori, S. A., Gul, S., Tahir, S., Sohail, M., Batool, S., Shahwani, M. N., . . . Butt, M.-u.-R. (2019). Wood-derived biochar influences nutrient use efficiency of heavy metals in spinach (spinacia oleracea) under groundwater and wastewater irrigation. Journal of Environmental Engineering and Landscape Management, 27(3), 144-152. https://doi.org/10.3846/jeelm.2019.10792.

Guerra Sierra, B. E., Muñoz Guerrero, J., & Sokolski, S. (2021). Phytoremediation of Heavy Metals in Tropical Soils an Overview. Sustainability, 13(5), 2574. https://doi.org/10.3390/su13052574.

Guo, M., Song, W., & Tian, J. (2020). Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations [Review]. Frontiers in Environmental Science, Volume 8 - 2020. https://doi.org/10.3389/fenvs.2020.521512.

Hayyat, A., Javed, M., Rasheed, I., Ali, S., Shahid, M. J., Rizwan, M., . . . Ali, Q. (2016). Role of Biochar in Remediating Heavy Metals in Soil. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation: Management of Environmental Contaminants, Volume 3 (pp. 421-437). Springer International Publishing. https://doi.org/10.1007/978-3-319-40148-5_14

Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., . . . Wan, J. (2017). The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere, 174, 545-553. https://doi.org/10.1016/j.chemosphere.2017.01.130.

Ishii, Y., Hamano, K., Kang, D.-J., Idota, S., & Nishiwaki, A. (2015). Cadmium Phytoremediation Potential of Napiergrass Cultivated in Kyushu, Japan. Applied and Environmental Soil Science, 2015(1), 756270. https://doi.org/10.1155/2015/756270.

Juel, M. A. I., Dey, T. K., Akash, M. I. S., & Das, K. K. (2021). Heavy Metals Phytoremidiation Potential of Napier Grass Cultivated on Tannery Sludge in Bangladesh. Journal of Engineering Science, 12(1), 35-41. https://doi.org/10.3329/jes.v12i1.53099.

Khodijah, N. S., Suwignyo, R. A., Harun, M. U., & Robiartini, L. (2019). Phytoremediation potential of some grasses on lead heavy metal in tailing planting media of former tin mining. Biodiversitas Journal of Biological Diversity, 20(7). https://doi.org/10.13057/biodiv/d200725.

Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502. https://doi.org/10.1016/j.jhazmat.2019.121502.

Lahori, A. H., Mierzwa-Hersztek, M., Demiraj, E., Idir, R., Bui, T. T. X., Vu, D. D., . . . Zhang, Z. (2020). Clays, Limestone and Biochar Affect the Bioavailability and Geochemical Fractions of Cadmium and Zinc from Zn-Smelter Polluted Soils. Sustainability, 12(20), 8606. https://doi.org/10.3390/su12208606.

Liu, J., Wang, H., Ma, N., Zhou, B., Chen, H., & Yuan, R. (2022). Optimization of the raw materials of biochars for the adsorption of heavy metal ions from aqueous solution. Water Science and Technology, 85(10), 2869-2881. https://doi.org/10.2166/wst.2022.158.

Miao, X., Hao, Y., Zhang, F., Zou, S., Ye, S., & Xie, Z. (2020). Spatial distribution of heavy metals and their potential sources in the soil of Yellow River Delta: a traditional oil field in China. Environmental Geochemistry and Health, 42(1), 7-26. https://doi.org/10.1007/s10653-018-0234-5.

More, S., Shinde, S., & Kasture, M. (2020). Root exudates a key factor for soil and plant: An overview. The Pharma Innovation Journal, 8, 449-459. https://www.thepharmajournal.com/archives/?year=2019&vol=8&issue=6&ArticleId=3841.

Ohta, T., & Hiura, T. (2016). Root exudation of low-molecular-mass-organic acids by six tree species alters the dynamics of calcium and magnesium in soil. Canadian Journal of Soil Science, 96(2), 199-206. https://doi.org/10.1139/cjss-2015-0063.

Olalekan, O., Abayomi, T., Taiwo, I., & Luqman, Y. (2016). The effects of pH on the levels of some heavy metals in soil samples of five dumpsites in Abeokuta and its environs. International Journal of Science and Research, 5(9), 1543-1545. https://www.ijsr.net/getabstract.php?paperid=21031604.

Salam, A. K., Hidayatullah, M. A., Supriatin, S., & Yusnaini, S. (2021). The phytoextraction of Cu and Zn by elephant grass (Pennisetum purpureum) from tropical soil 21 years after amendment with industrial waste containing heavy metals. IOP Conference Series: Earth and Environmental Science, 637(1), 012044. https://doi.org/10.1088/1755-1315/637/1/012044.

Salam, A. K., Novpriansyah, H., & Bucharie, H. (2022). Metal Extractability Changes in Soils Under Thorny Amaranth [Metal Analysis; Metal Extraction; Metal Forms; Tropical Soils]. 2022, 19(2), 10. https://doi.org/10.20961/stjssa.v19i2.65456.

Salam, A. K., Pakpahan, A. F., Susilowati, G., Fernando, N., Sriyani, N., Sarno, S., . . . Dermiyati, D. (2021). The Residual Copper and Zinc in Tropical Soil over 21 Years after Amendment with Heavy Metal Containing Waste, Lime, and Compost. Applied and Environmental Soil Science, 2021(1), 7596840. https://doi.org/10.1155/2021/7596840.

Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., . . . Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116.

Silva, G., Aini, S. N., Buchari, H., & Salam, A. K. (2021). The phytoextraction of copper from tropical soil 21 years after amendment with heavy-metal containing waste. Journal of Tropical Soils, 26(1), 11-18. https://doi.org/10.5400/jts.2021.v26i1.11-18.

Sun, X., Sun, M., Chao, Y., Shang, X., Wang, H., Pan, H., . . . Zhuge, Y. (2023). Effects of lead pollution on soil microbial community diversity and biomass and on invertase activity. Soil Ecology Letters, 5(1), 118-127. https://doi.org/10.1007/s42832-022-0134-6.

Ugwu, E. I., Tursunov, O., Kodirov, D., Shaker, L. M., Al-Amiery, A. A., Yangibaeva, I., & Shavkarov, F. (2020). Adsorption mechanisms for heavy metal removal using low cost adsorbents: A review. IOP Conference Series: Earth and Environmental Science, 614(1), 012166. https://doi.org/10.1088/1755-1315/614/1/012166.

Wang, S., Xu, Y., Norbu, N., & Wang, Z. (2018). Remediation of biochar on heavy metal polluted soils. IOP Conference Series: Earth and Environmental Science, 108(4), 042113. https://doi.org/10.1088/1755-1315/108/4/042113.

Wu, L., Kobayashi, Y., Wasaki, J., & Koyama, H. (2018). Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Science and Plant Nutrition, 64(6), 697-704. https://doi.org/10.1080/00380768.2018.1537093.

Yang, Y., Yang, Z., Yu, S., & Chen, H. (2019). Organic Acids Exuded From Roots Increase the Available Potassium Content in the Rhizosphere Soil: A Rhizobag Experiment in Nicotiana tabacum. HortScience, 54(1), 23-27. https://doi.org/10.21273/hortsci13569-18.

Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W., & Marhaba, T. (2018). pH Effect on Heavy Metal Release from a Polluted Sediment. Journal of Chemistry, 2018(1), 7597640. https://doi.org/10.1155/2018/7597640.

Refbacks

  • There are currently no refbacks.