Metal absorption by pigweed and napier grass in biochar-treated soils
Abstract
Keywords
Full Text:
PDFReferences
Afriyani, N. A., Durotussyifa, N., Nisa, U., Novpriansyah, H., Niswati, A., Sarno, & Salam, A. K. (2024). The Biochar-Enhanced Phytoextraction of Heavy-Metal-Polluted Tropical Soils by Thorny Amaranth (Amaranthus spinosus). IOP Conference Series: Earth and Environmental Science, 1362(1), 012009. https://doi.org/10.1088/1755-1315/1362/1/012009.
Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering & Management, 5(3), 56-66. https://doi.org/10.13140/RG.2.2.27583.87204.
Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., . . . Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. Journal of Environmental Management, 222, 76-85. https://doi.org/10.1016/j.jenvman.2018.05.004.
Chen, X. C., Huang, L., Chang, T. H. A., Ong, B. L., Ong, S. L., & Hu, J. (2019). Plant Traits for Phytoremediation in the Tropics. Engineering, 5(5), 841-848. https://doi.org/10.1016/j.eng.2019.07.019.
Dietz, S., Herz, K., Gorzolka, K., Jandt, U., Bruelheide, H., & Scheel, D. (2020). Root exudate composition of grass and forb species in natural grasslands. Scientific Reports, 10(1), 10691. https://doi.org/10.1038/s41598-019-54309-5.
dos Santos Martins, D. D., Serra, J. C. V., Zukowski Junior, J. C., & Pedroza, M. M. (2019). Efficiency of biochars in the removal of heavy metals. Acta Brasiliensis, 3(3), 131-138. https://doi.org/10.22571/2526-4338242.
Ghori, S. A., Gul, S., Tahir, S., Sohail, M., Batool, S., Shahwani, M. N., . . . Butt, M.-u.-R. (2019). Wood-derived biochar influences nutrient use efficiency of heavy metals in spinach (spinacia oleracea) under groundwater and wastewater irrigation. Journal of Environmental Engineering and Landscape Management, 27(3), 144-152. https://doi.org/10.3846/jeelm.2019.10792.
Guerra Sierra, B. E., Muñoz Guerrero, J., & Sokolski, S. (2021). Phytoremediation of Heavy Metals in Tropical Soils an Overview. Sustainability, 13(5), 2574. https://doi.org/10.3390/su13052574.
Guo, M., Song, W., & Tian, J. (2020). Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations [Review]. Frontiers in Environmental Science, Volume 8 - 2020. https://doi.org/10.3389/fenvs.2020.521512.
Hayyat, A., Javed, M., Rasheed, I., Ali, S., Shahid, M. J., Rizwan, M., . . . Ali, Q. (2016). Role of Biochar in Remediating Heavy Metals in Soil. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation: Management of Environmental Contaminants, Volume 3 (pp. 421-437). Springer International Publishing. https://doi.org/10.1007/978-3-319-40148-5_14
Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., . . . Wan, J. (2017). The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere, 174, 545-553. https://doi.org/10.1016/j.chemosphere.2017.01.130.
Ishii, Y., Hamano, K., Kang, D.-J., Idota, S., & Nishiwaki, A. (2015). Cadmium Phytoremediation Potential of Napiergrass Cultivated in Kyushu, Japan. Applied and Environmental Soil Science, 2015(1), 756270. https://doi.org/10.1155/2015/756270.
Juel, M. A. I., Dey, T. K., Akash, M. I. S., & Das, K. K. (2021). Heavy Metals Phytoremidiation Potential of Napier Grass Cultivated on Tannery Sludge in Bangladesh. Journal of Engineering Science, 12(1), 35-41. https://doi.org/10.3329/jes.v12i1.53099.
Khodijah, N. S., Suwignyo, R. A., Harun, M. U., & Robiartini, L. (2019). Phytoremediation potential of some grasses on lead heavy metal in tailing planting media of former tin mining. Biodiversitas Journal of Biological Diversity, 20(7). https://doi.org/10.13057/biodiv/d200725.
Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502. https://doi.org/10.1016/j.jhazmat.2019.121502.
Lahori, A. H., Mierzwa-Hersztek, M., Demiraj, E., Idir, R., Bui, T. T. X., Vu, D. D., . . . Zhang, Z. (2020). Clays, Limestone and Biochar Affect the Bioavailability and Geochemical Fractions of Cadmium and Zinc from Zn-Smelter Polluted Soils. Sustainability, 12(20), 8606. https://doi.org/10.3390/su12208606.
Liu, J., Wang, H., Ma, N., Zhou, B., Chen, H., & Yuan, R. (2022). Optimization of the raw materials of biochars for the adsorption of heavy metal ions from aqueous solution. Water Science and Technology, 85(10), 2869-2881. https://doi.org/10.2166/wst.2022.158.
Miao, X., Hao, Y., Zhang, F., Zou, S., Ye, S., & Xie, Z. (2020). Spatial distribution of heavy metals and their potential sources in the soil of Yellow River Delta: a traditional oil field in China. Environmental Geochemistry and Health, 42(1), 7-26. https://doi.org/10.1007/s10653-018-0234-5.
More, S., Shinde, S., & Kasture, M. (2020). Root exudates a key factor for soil and plant: An overview. The Pharma Innovation Journal, 8, 449-459. https://www.thepharmajournal.com/archives/?year=2019&vol=8&issue=6&ArticleId=3841.
Ohta, T., & Hiura, T. (2016). Root exudation of low-molecular-mass-organic acids by six tree species alters the dynamics of calcium and magnesium in soil. Canadian Journal of Soil Science, 96(2), 199-206. https://doi.org/10.1139/cjss-2015-0063.
Olalekan, O., Abayomi, T., Taiwo, I., & Luqman, Y. (2016). The effects of pH on the levels of some heavy metals in soil samples of five dumpsites in Abeokuta and its environs. International Journal of Science and Research, 5(9), 1543-1545. https://www.ijsr.net/getabstract.php?paperid=21031604.
Salam, A. K., Hidayatullah, M. A., Supriatin, S., & Yusnaini, S. (2021). The phytoextraction of Cu and Zn by elephant grass (Pennisetum purpureum) from tropical soil 21 years after amendment with industrial waste containing heavy metals. IOP Conference Series: Earth and Environmental Science, 637(1), 012044. https://doi.org/10.1088/1755-1315/637/1/012044.
Salam, A. K., Novpriansyah, H., & Bucharie, H. (2022). Metal Extractability Changes in Soils Under Thorny Amaranth [Metal Analysis; Metal Extraction; Metal Forms; Tropical Soils]. 2022, 19(2), 10. https://doi.org/10.20961/stjssa.v19i2.65456.
Salam, A. K., Pakpahan, A. F., Susilowati, G., Fernando, N., Sriyani, N., Sarno, S., . . . Dermiyati, D. (2021). The Residual Copper and Zinc in Tropical Soil over 21 Years after Amendment with Heavy Metal Containing Waste, Lime, and Compost. Applied and Environmental Soil Science, 2021(1), 7596840. https://doi.org/10.1155/2021/7596840.
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., . . . Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116.
Silva, G., Aini, S. N., Buchari, H., & Salam, A. K. (2021). The phytoextraction of copper from tropical soil 21 years after amendment with heavy-metal containing waste. Journal of Tropical Soils, 26(1), 11-18. https://doi.org/10.5400/jts.2021.v26i1.11-18.
Sun, X., Sun, M., Chao, Y., Shang, X., Wang, H., Pan, H., . . . Zhuge, Y. (2023). Effects of lead pollution on soil microbial community diversity and biomass and on invertase activity. Soil Ecology Letters, 5(1), 118-127. https://doi.org/10.1007/s42832-022-0134-6.
Ugwu, E. I., Tursunov, O., Kodirov, D., Shaker, L. M., Al-Amiery, A. A., Yangibaeva, I., & Shavkarov, F. (2020). Adsorption mechanisms for heavy metal removal using low cost adsorbents: A review. IOP Conference Series: Earth and Environmental Science, 614(1), 012166. https://doi.org/10.1088/1755-1315/614/1/012166.
Wang, S., Xu, Y., Norbu, N., & Wang, Z. (2018). Remediation of biochar on heavy metal polluted soils. IOP Conference Series: Earth and Environmental Science, 108(4), 042113. https://doi.org/10.1088/1755-1315/108/4/042113.
Wu, L., Kobayashi, Y., Wasaki, J., & Koyama, H. (2018). Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Science and Plant Nutrition, 64(6), 697-704. https://doi.org/10.1080/00380768.2018.1537093.
Yang, Y., Yang, Z., Yu, S., & Chen, H. (2019). Organic Acids Exuded From Roots Increase the Available Potassium Content in the Rhizosphere Soil: A Rhizobag Experiment in Nicotiana tabacum. HortScience, 54(1), 23-27. https://doi.org/10.21273/hortsci13569-18.
Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W., & Marhaba, T. (2018). pH Effect on Heavy Metal Release from a Polluted Sediment. Journal of Chemistry, 2018(1), 7597640. https://doi.org/10.1155/2018/7597640.
Refbacks
- There are currently no refbacks.









.png)





