Reducing potassium leaching in peat soil using potassium zeolite-based fertilizer (ZEKA)

Eko Noviandi Ginting, Syaiful Anwar, Budi Nugroho, Suroso Rahutomo

Abstract

Using peat soils for agricultural purposes is challenged by low fertilizer efficiency, especially potassium chloride (KCl). On the other hand, zeolite is a potential material to produce slow-release fertilizers to improve fertilizer efficiency. This study aims to evaluate and compare potassium leaching from a conventional potassium fertilizer, KCl, and a zeolite-based potassium fertilizer, ZEKA, on peat soil columns. The ZEKA fertilizer was produced using two different zeolite particle sizes: coarse zeolite (ZC) and fine zeolite (ZF). The K leached from the fertilizers was measured in a peat soil column. Three zeolite-based potassium fertilizers were formulated: (1) 40% potassium-impregnated zeolite and 60% KCl; (2) 50% potassium-impregnated zeolite and 50% KCl; and (3) 60% potassium-impregnated zeolite and 40% KCl. Since two different sizes of zeolite were used in this study—coarse zeolite (ZC) and fine zeolite (ZF)—the results of the formulation are referred to as follows: ZC-1, ZC-2, ZC-3, ZF-1, ZF-2, and ZF-3.  The experiment was completely randomized with eight treatments and three replications. The treatments were as follows: (1) control, (2) KCl, (3) ZC-1, (4) ZC-2, (5) ZC-3, (6) ZF-1, (7) ZF-2, and (8) ZF-3. The findings revealed that ZC-1 and ZF-1 were the most effective ZEKA fertilizer formulations, with total potassium leached of 1.84 grams and 1.05 grams, respectively. Furthermore, the results showed that the total potassium leached from ZEKA fertilizer was 1.71 grams, while the total potassium leached from KCl fertilizer was 2.83 grams. The results showed that ZEKA fertilizer reduced potassium leaching by around 40% compared to KCl fertilizer. Furthermore, the results of this study can be used to improve the efficiency of potassium fertilizer, particularly in agricultural practices on the peatlands.

Keywords

Ameliorant; Cation exchange capacity; Formulation; Slow release; Sustainability

Full Text:

PDF

References

Adam, M. R., Othman, M. H. D., Sheikh Abdul Kadir, S. H., Mohd Sokri, M. N., Tai, Z. S., Iwamoto, Y., . . . Jaafar, J. (2020). Influence of the Natural Zeolite Particle Size Toward the Ammonia Adsorption Activity in Ceramic Hollow Fiber Membrane. Membranes, 10(4), 63. https://doi.org/10.3390/membranes10040063

Azis, A., Rauf, A., Hanum, H., & Agus, F. (2022). Dynamics of nutrition peat soil due the biochar of oil palm empty bunches application and nitrogen and kalium. IOP Conference Series: Earth and Environmental Science, 977(1), 012097. https://doi.org/10.1088/1755-1315/977/1/012097

Bagheri, H., Zare Abyaneh, H., & Izady, A. (2021). Nutrient and colloid leaching from un-amended versus vermicompost-amended soil. Soil and Tillage Research, 213, 105092. https://doi.org/10.1016/j.still.2021.105092

Bhattacharyya, T., Chandran, P., Ray, S., Pal, D., Mandal, C., & Mandal, D. (2015). Distribution of zeolitic soils in India. Current Science, 109(7), 1305-1313. https://oar.icrisat.org/9106/1/ZEOLITE%20CURRENT%20SCIENCE%20PAPER%20.pdf

Binner, I., Dultz, S., Schellhorn, M., & Schenk, M. K. (2017). Potassium adsorption and release properties of clays in peat-based horticultural substrates for increasing the cultivation safety of plants. Applied Clay Science, 145, 28-36. https://doi.org/10.1016/j.clay.2017.05.013

Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D., . . . Mattii, G. B. (2021). Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy, 11(8), 1547. https://doi.org/10.3390/agronomy11081547

Cole, L. E. S., Åkesson, C. M., Hapsari, K. A., Hawthorne, D., Roucoux, K. H., Girkin, N. T., . . . Thornton, S. A. (2022). Tropical peatlands in the anthropocene: Lessons from the past. Anthropocene, 37, 100324. https://doi.org/10.1016/j.ancene.2022.100324

Cuin, T. A., Dreyer, I., & Michard, E. (2018). The Role of Potassium Channels in Arabidopsis thaliana Long Distance Electrical Signalling: AKT2 Modulates Tissue Excitability While GORK Shapes Action Potentials. International Journal of Molecular Sciences, 19(4), 926. https://doi.org/10.3390/ijms19040926

Dreyer, I., Gomez-Porras, J. L., & Riedelsberger, J. (2017). The potassium battery: a mobile energy source for transport processes in plant vascular tissues. New Phytologist, 216(4), 1049-1053. https://doi.org/10.1111/nph.14667

Fatimah, S., Noor, M., & Saputra, R. A. (2024). The Efficacy of Several Agricultural Wastes as Ameliorant for Peat Degraded Soil: The Case of Kalimantan. Tropical Wetland Journal, 10(1), 39-45. https://doi.org/10.20527/twj.v10i1.131

Hashim, S. A., Teh, C. B. S., & Ahmed, O. H. (2019). Influence of Water Table Depths, Nutrients Leaching Losses, Subsidence of Tropical Peat Soil and Oil Palm (Elaeis guineensis Jacq.) Seedling Growth. Malaysian Journal of Soil Science, 23, 13-30. https://www.msss.com.my/mjss/Full%20Text/vol23/V23_02.pdf

Jakkula, V. S., & Wani, S. P. (2018). Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity. Scientific Reviews & Chemical Communications, 8(1), 1-15. https://oar.icrisat.org/10768/1/Zeolites-Potential-soil-amendments-for-improving-nutrient-and-water-use-efficiency-and-agriculture-productivity.pdf

Jaskūnas, A., Subačius, B., & Šlinkštienė, R. (2015). Adsorption of potassium ions on natural zeolite: Kinetic and equilibrium studies. Chemija, 26(2). https://doi.org/10.6001/chemija.2015.26.2.1

Jia, Q., Zheng, C., Sun, S., Amjad, H., Liang, K., & Lin, W. (2018). The role of plant cation/proton antiporter gene family in salt tolerance. Biologia Plantarum, 62(4), 617-629. https://doi.org/10.1007/s10535-018-0801-8

Kalsoom, M., Ur Rehman, F., Shafique, T., Junaid, S., Khalid, N., Adnan, M., . . . Ali, H. (2020). Biological Importance Of Microbes In Agriculture, Food And Pharmaceutical Industry: A Review. Innovare Journal of Life Sciences, 8(6), 1-4. https://doi.org/10.22159/ijls.2020.v8i6.39845

Krishnan, K., Ngerong, A. A., Ahim, K., Ahmed, O. H., Ali, M., Omar, L., & Musah, A. A. (2021). Mitigating Potassium Leaching from Muriate of Potash in a Tropical Peat Soil Using Clinoptilolite Zeolite, Forest Litter Compost, and Chicken Litter Biochar. Agronomy, 11(10), 1900. https://doi.org/10.3390/agronomy11101900

Kumar, P. S., Korving, L., Keesman, K. J., van Loosdrecht, M. C. M., & Witkamp, G.-J. (2019). Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 358, 160-169. https://doi.org/10.1016/j.cej.2018.09.202

Kurnianto, S., Selker, J., Boone Kauffman, J., Murdiyarso, D., & Peterson, J. T. (2019). The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change, 24(4), 535-555. https://doi.org/10.1007/s11027-018-9802-3

Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., & Saleem, M. (2016). Synthesis and characterization of zeolite based nano–composite: An environment friendly slow release fertilizer. Microporous and Mesoporous Materials, 232, 174-183. https://doi.org/10.1016/j.micromeso.2016.06.020

Messiga, A. J., Dyck, K., Ronda, K., van Baar, K., Haak, D., Yu, S., & Dorais, M. (2020). Nutrients Leaching in Response to Long-Term Fertigation and Broadcast Nitrogen in Blueberry Production. Plants, 9(11), 1530. https://doi.org/10.3390/plants9111530

Mondal, M., Biswas, B., Garai, S., Sarkar, S., Banerjee, H., Brahmachari, K., . . . Hossain, A. (2021). Zeolites Enhance Soil Health, Crop Productivity and Environmental Safety. Agronomy, 11(3), 448. https://doi.org/10.3390/agronomy11030448

Muhammad, S., Sanden, B. L., Saa, S., Lampinen, B. D., Smart, D. R., Shackel, K. A., . . . Brown, P. H. (2018). Optimization of nitrogen and potassium nutrition to improve yield and yield parameters of irrigated almond (Prunus dulcis (Mill.) D. A. webb). Scientia Horticulturae, 228, 204-212. https://doi.org/10.1016/j.scienta.2017.10.024

Mustamo, P., Hyvärinen, M., Ronkanen, A.-K., & Kløve, B. (2016). Physical properties of peat soils under different land use options. Soil Use and Management, 32(3), 400-410. https://doi.org/10.1111/sum.12272

Nakhli, S. A. A., Delkash, M., Bakhshayesh, B. E., & Kazemian, H. (2017). Application of Zeolites for Sustainable Agriculture: a Review on Water and Nutrient Retention. Water, Air, & Soil Pollution, 228(12), 464. https://doi.org/10.1007/s11270-017-3649-1

Rameshaiah, G., Pallavi, J., & Shabnam, S. (2015). Nano fertilizers and nano sensors–an attempt for developing smart agriculture. International Journal of Engineering Research and General Science, 3(1), 314-320. https://pnrsolution.org/Datacenter/Vol3/Issue1/40.pdf

Reeza, A. A., Hussin, A., & Ahmed, O. H. (2021). Comparison of the effectiveness of three extractants in extracting potassium, calcium and magnesium from tropical peat soils. Mires and Peat, 27, 1-10. https://doi.org/10.19189/MaP.2019.OMB.StA.1833

Rosenani, A. B., Rabuni, W., Cheah, P., & Noraini, J. (2016). Mass loss and release of nutrient from empty fruit bunch of oil palm applied as mulch to newly transplanted oil palm. Soil Research, 54(8), 985-996. https://doi.org/10.1071/SR15143

Santi, L. P., Goenadi, D. H., Sabiham, S., & Bindar, Y. (2021). The Use of Molecular-Sieving Materials as Ameliorant for Peat Degradation in the Tropics. Journal of Minerals and Materials Characterization and Engineering, 9(4), 362-374. https://doi.org/10.4236/jmmce.2021.94025

Sardans, J., & Peñuelas, J. (2021). Potassium Control of Plant Functions: Ecological and Agricultural Implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419

Sarkkola, S., Laiho, R., Ukonmaanaho, L., Nieminen, T., Laurén, A., Finér, L., . . . Nieminen, M. (2016). sufficiency of potassium (K) for wood production – long-term effects of forest management on the K-balance of drained boreal peatlands. Peatlands in harmony-agriculture, industry and nature: Proceedings of the 15th international peat congress, oral presentations, extended abstracts, 15th-19th August 2016, Kuching, Sarawak, Malaysia. https://peatlands.org/document/sufficiency-of-potassium-k-for-wood-production-long-term-effects-of-forest-management-on-the-k-balance-of-drained-boreal-peatlands/

Sindesi, O. A., Lewu, M. N., Ncube, B., Mulidzi, A., & Lewu, F. B. (2022). Residual effect of zeolite on soil exchangeable cations and cation exchange capacity in sandy soil cultivated with Swiss Chard. 35th Int'l Conference on Chemical, Biological and Environmental Engineering (ICCBEE-22) Nov. 28-29, 2022. Johannesburg (South Africa), 40-43.

Soumare, A., Sarr, D., & DiÉDhiou, A. G. (2023). Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere, 33(1), 105-115. https://doi.org/10.1016/j.pedsph.2022.06.025

Sustr, M., Soukup, A., & Tylova, E. (2019). Potassium in Root Growth and Development. Plants, 8(10), 435. https://doi.org/10.3390/plants8100435

Tandiono, J., Thamrin, Hapsoh, & Warningsih, T. (2025). Impact of using Boiler Ash as Soil Ameliorant and Nitrogen Fertilizer on CO2 Emission in Oil Palm Plantations on Peat Soil. Pertanika Journal of Tropical Agricultural Science, 48(2), 653-665. https://doi.org/10.47836/pjtas.48.2.18

Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414-431. https://doi.org/10.1111/ppl.12747

Ullah Khan, S., Ahmad Alizai, A., Ahmed, N., Sayed, S., Junaid, M., Kanwal, M., . . . Ali, E. F. (2022). Investigating the role of potassium and urea to control fruit drop and to improve fruit quality of “Dhakki” date palm. Saudi Journal of Biological Sciences, 29(5), 3806-3814. https://doi.org/10.1016/j.sjbs.2022.02.060

Utami, S. N. H., Kusumawardani, P. N., Maftu’ah, E., Noor, M., Masganti, Wakhid, N., . . . Karolinoerita, V. (2024). Empty Fruit Bunch Oil Palm Ash and Biochar Improved Peat Soil Properties, NPK Status on Leaves, and the Growth of Immature Oil Palm Plantations. Applied and Environmental Soil Science, 2024(1), 1133527. https://doi.org/10.1155/aess/1133527

Widiarso, B., Minardi, S., Komariah, K., Chandra, T. O., Elmahdi, M. A., & Senge, M. (2020). Predicting peatland groundwater table and soil moisture dynamics affected by drainage level. Sains Tanah Journal of Soil Science and Agroclimatology, 17(1), 8. https://doi.org/10.20961/stjssa.v17i1.38459

Refbacks

  • There are currently no refbacks.