Soil physicochemical properties and microbial biomass in agriculture and abandoned lands of Shivapuri-Nagarjun National Park, Kathmandu, Nepal
Abstract
Keywords
Full Text:
PDFReferences
Abera, Y., & Belachew, T. (2011). Effects of landuse on soil organic carbon and nitrogen in soils of Bale, Southeastern Ethiopia. Tropical and subtropical agroecosystems, 14(1), 229-235. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/538/519
Acharya, R., & Shrestha, B. B. (2015). Physiochemical Characteristics of Soil of a Mixed Shorea Robusta Forest in Rupandehi District, Nepal. Journal of Natural History Museum, 26(0), 155-162. https://doi.org/10.3126/jnhm.v26i0.14139
Agbeshie, A. A., Abugre, S., Adjei, R., Atta-Darkwa, T., & Anokye, J. (2020). Impact of Land Use Types and Seasonal Variations on Soil Physico-chemical Properties and Microbial Biomass Dynamics in a Tropical Climate, Ghana. Advances in Research, 21(1), 34–49. https://doi.org/10.9734/air/2020/v21i130180
Amgain, R., Khadka, D., Joshi, S., & Malla, R. (2020). Depth-wise variations of soil physicochemical properties in the apple growing area of Mustang district, Nepal. Journal of Agriculture and Natural Resources, 3(2), 92-103. https://doi.org/10.3126/janr.v3i2.32486
Anikwe, M. A. N., & Ife, K. (2023). The role of soil ecosystem services in the circular bioeconomy [Review]. Frontiers in Soil Science, Volume 3 - 2023. https://doi.org/10.3389/fsoil.2023.1209100
Assefa, F., Elias, E., Soromessa, T., & Ayele, G. T. (2020). Effect of Changes in Land-Use Management Practices on Soil Physicochemical Properties in Kabe Watershed, Ethiopia. Air, Soil and Water Research, 13, 1178622120939587. https://doi.org/10.1177/1178622120939587
Athira, M., Jagadeeswaran, R., & Kumaraperumal, R. (2019). Influence of soil organic matter on bulk density in Coimbatore soils. International Journal of Chemical Studies, 7(3), 3520-3523. http://www.chemijournal.com/archives/2019/vol7issue3/PartBF/7-3-360-895.pdf
Bangroo, S. A., Najar, G. R., & Rasool, A. (2017). Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. CATENA, 158, 63-68. https://doi.org/10.1016/j.catena.2017.06.017
Biro, K., Pradhan, B., Buchroithner, M., & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degradation & Development, 24(1), 90-102. https://doi.org/10.1002/ldr.1116
Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed.). Madison, USA: American Society of Agronomy.
Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal, 54(5), 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837-842. https://doi.org/10.1016/0038-0717(85)90144-0
Budhathoki, N., Dhakal, S., & Dyola, U. (2021). Diversity of hoverflies (Diptera: Syrphidae) in Nagarjun, Shivapuri Nagarjun National Park, Nepal. Biodiversitas Journal of Biological Diversity, 22(12). https://doi.org/10.13057/biodiv/d221220
Campbell, C. A., Biederbeck, V. O., Zentner, R. P., & Lafond, G. P. (1991). Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem. Canadian Journal of Soil Science, 71(3), 363-376. https://doi.org/10.4141/cjss91-035
Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). The Global Potential of Bioenergy on Abandoned Agriculture Lands. Environmental Science & Technology, 42(15), 5791-5794. https://doi.org/10.1021/es800052w
Chandra, L. R., Gupta, S., Pande, V., & Singh, N. (2016). Impact of forest vegetation on soil characteristics: a correlation between soil biological and physico-chemical properties. 3 Biotech, 6(2), 188. https://doi.org/10.1007/s13205-016-0510-y
Dahal, G. R., Pandit, B. H., & Shah, R. (2020). Abandoned agricultural land and its reutilisation by adoption of agroforestry: a case study from Kaski and Parbat Districts of Nepal. Journal of Forest and Livelihood, 19(1), 1-16. https://www.forestaction.org/app/webroot/vendor/tinymce/editor/plugins/filemanager/files/JFL%2019%20(1)/1%20Dahal%20et%20al.pdf
Dhakal, T., Thapa, L. B., Pokhrel, C. P., & Yadav, R. K. P. (2023). Plant communities in Shivapuri Nagarjun National Park, Central Nepal. Banko Janakari, 33(2), 11-23. https://doi.org/10.3126/banko.v33i2.55086
Dobrovol’skaya, T. G., Zvyagintsev, D. G., Chernov, I. Y., Golovchenko, A. V., Zenova, G. M., Lysak, L. V., . . . Umarov, M. M. (2015). The role of microorganisms in the ecological functions of soils. Eurasian Soil Science, 48(9), 959-967. https://doi.org/10.1134/S1064229315090033
Enkova, L. K., & UrÍK, M. (2012). Soil moisture and its effect on bulk density and porosity of intact aggregates of three Mollic soils. The Indian Journal of Agricultural Sciences, 82(2), 172–176. https://doi.org/10.56093/ijas.v82i2.15297
Feifel, M., Durner, W., Hohenbrink, T. L., & Peters, A. (2024). Effects of improved water retention by increased soil organic matter on the water balance of arable soils: A numerical analysis. Vadose Zone Journal, 23(1), e20302. https://doi.org/10.1002/vzj2.20302
Ganai, A., Dar, M., Chesti, M., Bhat, Z., Khanday, M., & Dar, N. (2018). Macronutrients status of apple (cv. red delicious) orchard soils of Jammu and Kashmir India. International Journal of Chemical Studies, 6(2), 3314-3319. https://www.chemijournal.com/archives/?year=2018&vol=6&issue=2&ArticleId=2358&si=
Gautam, B., & Chettri, M. K. (2020). Physicochemical properties of tropical forest top soil in relation to depth in western Nepal. Banko Janakari, 30(1), 39-48. https://doi.org/10.3126/banko.v30i1.29181
Gautam, T. P., & Mandal, T. N. (2013). Soil Characteristics in Moist Tropical Forest of Sunsari District, Nepal. Nepal Journal of Science and Technology, 14(1), 35-40. https://doi.org/10.3126/njst.v14i1.8876
Gelman, F., Binstock, R., & Halicz, L. (2012). Application of the Walkley–Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel, 96, 608-610. https://doi.org/10.1016/j.fuel.2011.12.053
Herreño, B., De la Colina, F., & Delgado-Iniesta, M. J. (2023). Edaphosphere: A Perspective of Soil Inside the Biosphere. Earth, 4(3), 691-697. https://doi.org/10.3390/earth4030036
IBM Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0. In Armonk, New York: IBM Corp.
Jackson, M. L. (1969). Soil Chemical Analysis: Advanced Course : a Manual of Methods Useful for Instruction and Research in Soil Chemistry, Physical Chemistry of Soils, Soil Fertility, and Soil Genesis (2nd ed.). UW-Madison Libraries Parallel Press.
Kafle, G. (2019). Vertical Distribution of Soil Organic Carbon and Nitrogen in a Tropical Community Forest of Nepal. International Journal of Forestry Research, 2019(1), 3087570. https://doi.org/10.1155/2019/3087570
Lei, Z., Yu, D., Zhou, F., Zhang, Y., Yu, D., Zhou, Y., & Han, Y. (2019). Changes in soil organic carbon and its influencing factors in the growth of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land, Northeast China. Scientific Reports, 9(1), 16453. https://doi.org/10.1038/s41598-019-52945-5
Lepcha, N. T., & Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological Processes, 9(1), 65. https://doi.org/10.1186/s13717-020-00269-y
Li, W., Yang, G., Chen, H., Tian, J., Zhang, Y., Zhu, Q. a., . . . Yang, J. a. (2013). Soil available nitrogen, dissolved organic carbon and microbial biomass content along altitudinal gradient of the eastern slope of Gongga Mountain. Acta Ecologica Sinica, 33(5), 266-271. https://doi.org/10.1016/j.chnaes.2013.07.006
Limbu, D. K., Koirala, M., & Shang, Z. (2020). Soil Microbial Biomass Carbon and Nitrogen in Himalayan Rangeland of Eastern Nepal: A Comparison between Grazed and Non-grazed Rangelands. Journal of Rangeland Science, 10(2), 217-227. https://journals.iau.ir/article_670805.html
Liu, D., Wang, B., Bhople, P., Davlatbekov, F., & Yu, F. (2020). Land rehabilitation improves edaphic conditions and increases soil microbial biomass and abundance. Soil Ecology Letters, 2(2), 145-156. https://doi.org/10.1007/s42832-020-0030-x
Magar, L. K., Kafle, G., & Aryal, P. (2020). Assessment of Soil Organic Carbon in Tropical Agroforests in the Churiya Range of Makawanpur, Nepal. International Journal of Forestry Research, 2020(1), 8816433. https://doi.org/10.1155/2020/8816433
Manral, V., Bargali, K., Bargali, S. S., Karki, H., & Chaturvedi, R. K. (2023). Seasonal Dynamics of Soil Microbial Biomass C, N and P along an Altitudinal Gradient in Central Himalaya, India. Sustainability, 15(2), 1651. https://doi.org/10.3390/su15021651
Nepal, S., & Mandal, R. A. (2018). Soil quality index and nutrient in Badekhola and Brindaban catchments, Nepal. MOJ Ecology & Environmental Sciences, 3(1), 54-57. http://medcraveonline.com/MOJES/MOJES-03-00066.pdf
Nguyen-Sy, T., Do, V. T. T., & Duy, D. P. (2022). Soil carbon mineralization affected by hot water and ultrasound pretreatment. Sains Tanah Journal of Soil Science and Agroclimatology, 19(1), 7. https://doi.org/10.20961/stjssa.v19i1.57554
Novara, A., Gristina, L., Sala, G., Galati, A., Crescimanno, M., Cerdà, A., . . . La Mantia, T. (2017). Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Science of The Total Environment, 576, 420-429. https://doi.org/10.1016/j.scitotenv.2016.10.123
Ojha, H. R., Shrestha, K. K., Subedi, Y. R., Shah, R., Nuberg, I., Heyojoo, B., . . . McManus, P. (2017). Agricultural land underutilisation in the hills of Nepal: Investigating socio-environmental pathways of change. Journal of Rural Studies, 53, 156-172. https://doi.org/10.1016/j.jrurstud.2017.05.012
Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of Agriculture: Washington, DC, USA, Circular no. 939.
Onwuka, B. (2018). Effects of soil temperature on some soil properties and plant growth [Review]. Advances in Plants & Agriculture Research, 8(1), 34-37. https://medcraveonline.com/APAR/APAR-08-00288.pdf
Padalia, K., Bargali, S., Bargali, K., & Khulbe, K. (2018). Microbial biomass carbon and nitrogen in relation to cropping systems in Central Himalaya, India. Current Science, 115(9), 1741-1750. https://www.currentscience.ac.in/Volumes/115/09/1741.pdf
Paudel, K. P., Tamang, S., & Shrestha, K. K. (2014). Transforming land and livelihood: Analysis of agricultural land abandonment in the Mid Hills of Nepal. Journal of Forest and Livelihood, 12(1), 9-9. https://nepjol.info/index.php/JFL/article/view/65677/49813
Piper, C. S. (2019). Soil and plant analysis (Vol. 368). Scientific Publishers. https://www.scientificpubonline.com/bookdetail/soil-plant-analysis/9788172336202/0
Pokharel, A. K., & Hallett, J. (2015). Distribution of rainfall intensity during the summer monsoon season over Kathmandu, Nepal. Weather, 70(9), 257-261. https://doi.org/10.1002/wea.2544
R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf
Ravindran, A., & Yang, S.-S. (2015). Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. Journal of Microbiology, Immunology and Infection, 48(4), 362-369. https://doi.org/10.1016/j.jmii.2014.02.003
Rendana, M., Idris, W. M. R., Abdul Rahim, S., Ali Rahman, Z., & Lihan, T. (2021). Characterization of physical, chemical and microstructure properties in the soft clay soil of the paddy field area. Sains Tanah Journal of Soil Science and Agroclimatology, 18(1), 8. https://doi.org/10.20961/stjssa.v18i1.50489
Rodríguez-León, C. H., Peña-Venegas, C. P., Sterling, A., Castro, D., Mahecha-Virguez, L. K., Virguez-Díaz, Y. R., & Silva-Olaya, A. M. (2021). Soil Quality Restoration during the Natural Succession of Abandoned Cattle Pastures in Deforested Landscapes in the Colombian Amazon. Agronomy, 11(12), 2484. https://doi.org/10.3390/agronomy11122484
Roxy, M. S., Sumithranand, V. B., & Renuka, G. (2010). Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. Journal of Earth System Science, 119(4), 507-517. https://doi.org/10.1007/s12040-010-0038-1
Shapkota, J., & Kafle, G. (2021). Variation in Soil Organic Carbon under Different Forest Types in Shivapuri Nagarjun National Park, Nepal. Scientifica, 2021(1), 1382687. https://doi.org/10.1155/2021/1382687
Sharma, M., & Kafle, G. (2020). Comparative assessment of profile storage of soil organic carbon and total nitrogen in forest and grassland in Jajarkot, Nepal. Journal of Agriculture and Natural Resources, 3(2), 184-192. https://doi.org/10.3126/janr.v3i2.32505
Silwal, T., Devkota, B. P., Poudel, P., & Morgan, M. (2022). Do Buffer Zone Programs Improve Local Livelihoods and Support Biodiversity Conservation? The Case of Sagarmatha National Park, Nepal. Tropical Conservation Science, 15, 19400829221106670. https://doi.org/10.1177/19400829221106670
SNNP. (2017). Shivapuri Nagarjun National Park (SNNP) and Buffer Zone Management Plan Fiscal Year 2074/75-087/079 (2017/018-2021/022). Shivapuri Nagarjun National Park Office, Panimuhan, Budhanilkantha, Kathmandu, Nepal. https://dnpwc.gov.np/media/publication/Management_Plan_2075_Shivapuri.pdf
Suntoro, S., Herdiansyah, G., & Mujiyo, M. (2024). Nutrient status and soil fertility index as a basis for sustainable rice field management in Madiun Regency, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 21(1), 10. https://doi.org/10.20961/stjssa.v21i1.73845
Tao, Y., Zhou, X.-B., Zhang, S.-H., Lu, H.-Y., & Shao, H. (2020). Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia. CATENA, 195, 104847. https://doi.org/10.1016/j.catena.2020.104847
Tripathi, N., & Singh, R. S. (2013). Cultivation impacts soil microbial dynamics in dry tropical forest ecosystem in India. Acta Ecologica Sinica, 33(6), 344-353. https://doi.org/10.1016/j.chnaes.2013.09.009
Yokoyama, D., Imai, N., & Kitayama, K. (2017). Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests. Plant and Soil, 416(1), 463-476. https://doi.org/10.1007/s11104-017-3225-x
Zhang, J., Li, H., Zhang, H., Zhang, H., & Tang, Z. (2021). Responses of Litter Decomposition and Nutrient Dynamics to Nitrogen Addition in Temperate Shrublands of North China. Frontiers in Plant Science, Volume 11 - 2020. https://doi.org/10.3389/fpls.2020.618675
Zhang, L., Zhao, R., & Xie, Z. (2014). Response of soil properties and C dynamics to land-use change in the west of Loess Plateau. Soil Science and Plant Nutrition, 60(4), 586-597. https://doi.org/10.1080/00380768.2014.922407
Zhou, W., Han, G., Liu, M., & Li, X. (2019). Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ, 7, e7880. https://doi.org/10.7717/peerj.7880
Refbacks
- There are currently no refbacks.









.png)





