Seasonal methane emissions and agronomic performance of Indonesia’s high-yielding rice cultivars on the north coastal rice fields of Central Java, Indonesia

Rina Kartikawati, Budiastuti Kurniasih, Eka Tarwaca Susila Putra, Eko Hanudin, Noppol Arunrat

Abstract

Rice contributes significantly to methane emissions. In the north coastal region of Central Java Island, flooding irrigation for high-yielding rice cultivation is used throughout the rice-producing season to reduce the salinity effect. Information on methane emissions in coastal rice fields, particularly in salt-affected soil, is still limited. This study aimed to measure the methane emissions from different high-yielding rice varieties and examine the association with agronomic performance. The study site was in the Wedung district of Demak Regency, Central Java, and the research was carried out from November 2022 to March 2023. Eight rice cultivars—Ciherang, Inpari 32, Inpari 34, Inpari 35, Biosalin 1, Biosalin 2, Inpari Unsoed 79, and Inpari 30—were investigated. The experiment was designed as a randomized block with four replications. Methane gas samples were collected during the growing season in relation to rice stages. There were substantial differences in methane emissions among the eight rice varieties. Inpari 32, Ciherang, and Biosalin 1 had higher rice yields and lower yield-scale methane emissions than the other five rice varieties. Grain production and effective tiller number were significantly (p<0.01) and inversely linked to methane emissions. We found Inpari 32, Ciherang, and Biosalin 1 to be low-methane and high-yielding rice cultivars in salt-affected soil. These findings suggest that the use of these rice varieties by coastal farmers could help mitigate greenhouse gas emissions.

Keywords

Growth; Methane flux; Rice characteristic; Salinity; Yield

Full Text:

PDF

References

Ardiarini, N. R., Arisandi, F. D., & Setyanto, P. (2020). Characteristics of rice plant with low methane emission. Ecology Environment and Conservartion, 26, 150-155. https://www.envirobiotechjournals.com/issues/article_abstract.php?aid=10440&iid=301&jid=3

Baruah, K. K., Gogoi, B., & Gogoi, P. (2010). Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy. Physiology and Molecular Biology of Plants, 16(1), 79-91. https://doi.org/10.1007/s12298-010-0010-1

Bharali, A., Baruah, K. K., & Gogoi, N. (2017). Potential option for mitigating methane emission from tropical paddy rice through selection of suitable rice varieties. Crop and Pasture Science, 68(5), 421-433, 413. https://doi.org/10.1071/CP16228

Bhattacharyya, P., Dash, P. K., Swain, C. K., Padhy, S. R., Roy, K. S., Neogi, S., . . . Mohapatra, T. (2019). Mechanism of plant mediated methane emission in tropical lowland rice. Science of The Total Environment, 651, 84-92. https://doi.org/10.1016/j.scitotenv.2018.09.141

BPS. (2020). Statistical year book of Indonesia. BPS - Statistics Indonesia. https://www.bps.go.id/id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html

Butterbach-Bahl, K., Papen, H., & Rennenberg, H. (1997). Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell & Environment, 20(9), 1175-1183. https://doi.org/10.1046/j.1365-3040.1997.d01-142.x

Datta, A., Yeluripati, J. B., Nayak, D. R., Mahata, K. R., Santra, S. C., & Adhya, T. K. (2013). Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmospheric Environment, 66, 114-122. https://doi.org/10.1016/j.atmosenv.2012.06.008

Ha, L. T. T., An, N. T., Ha, N. T., Zhou, M., Brüggemann, N., & Cong, V. H. (2023). Greenhouse gas emissions from agricultural land use in the coastal area of Red River Delta. International Journal of Environmental Science and Technology, 20(11), 12511-12520. https://doi.org/10.1007/s13762-023-04847-3

Habib, M. A., Islam, S. M. M., Haque, M. A., Hassan, L., Ali, M. Z., Nayak, S., . . . Gaihre, Y. K. (2023). Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh. Soil Systems, 7(2), 41. https://doi.org/10.3390/soilsystems7020041

Hafez, E. M., Abou El Hassan, W. H., Gaafar, I. A., & Seleiman, M. F. (2015). Effect of gypsum application and irrigation intervals on clay saline-sodic soil characterization, rice water use efficiency, growth, and yield. Journal of Agricultural Science, 7(12), 208. https://doi.org/10.5539/jas.v7n12p208

Hussain, M., Ahmad, S., Hussain, S., Lal, R., Ul-Allah, S., & Nawaz, A. (2018). Chapter Six - Rice in Saline Soils: Physiology, Biochemistry, Genetics, and Management. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 148, pp. 231-287). Academic Press. https://doi.org/10.1016/bs.agron.2017.11.002

Islam, S. M. M., Gaihre, Y. K., Islam, M. R., Khatun, A., & Islam, A. (2022). Integrated Plant Nutrient Systems Improve Rice Yields without Affecting Greenhouse Gas Emissions from Lowland Rice Cultivation. Sustainability, 14(18), 11338. https://doi.org/10.3390/su141811338

Jiang, Y., Tian, Y., Sun, Y., Zhang, Y., Hang, X., Deng, A., . . . Zhang, W. (2016). Effect of rice panicle size on paddy field CH4 emissions. Biology and Fertility of Soils, 52(3), 389-399. https://doi.org/10.1007/s00374-015-1084-2

Kaleeswari, R., & Bell, R. (2019). Greenhouse gas Emissions in Saline and Waterlogged. Malaysian Journal of Soil Science, 23. https://www.msss.com.my/mjss/Full%20Text/vol23/V23_15.pdf

Kartikawati, R., Ariani, M., Wihardjaka, A., & Setyanto, D. (2021). Characteristic of Rice Variety for Low Greenhouse Gases (GHGs) Emission in Facing the Challenges of Climate Change and National Food Security. Proceedings of PERIPI, Bogor, Indonesia.

Kato, Y., Collard, B. C. Y., Septiningsih, E. M., & Ismail, A. M. (2019). Increasing flooding tolerance in rice: combining tolerance of submergence and of stagnant flooding. Annals of Botany, 124(7), 1199-1209. https://doi.org/10.1093/aob/mcz118

Kim, W.-J., Bui, L. T., Chun, J.-B., McClung, A. M., & Barnaby, J. Y. (2018). Correlation between methane (CH4) emissions and root aerenchyma of rice varieties. Plant Breeding and Biotechnology, 6(4), 381-390. https://doi.org/10.9787/PBB.2018.6.4.381

Kuanar, S. R., Ray, A., Sethi, S. K., Chattopadhyay, K., & Sarkar, R. K. (2017). Physiological Basis of Stagnant Flooding Tolerance in Rice. Rice Science, 24(2), 73-84. https://doi.org/10.1016/j.rsci.2016.08.008

Kusuma, E. W. W., Maas, A., Utami, S. N. H., & Maftuah, E. (2021). Effects of rice husk biochar and raised bed on CO2 flux and shallot (Allium cepa L.) production on peatland. Sains Tanah - Journal of Soil Science and Agroclimatology, 18(2), 159-165. https://doi.org/10.20961/stjssa.v18i2.47974

Kwon, Y., Lee, J.-Y., Choi, J., Lee, S.-M., Kim, D., Cha, J.-K., . . . Ryu, C.-M. (2023). Loss-of-function gs3 allele decreases methane emissions and increases grain yield in rice. Nature Climate Change, 13(12), 1329-1333. https://doi.org/10.1038/s41558-023-01872-5

Lee, J.-H., Lee, J.-Y., Kang, Y.-G., Kim, J.-H., & Oh, T.-K. (2023). Evaluating methane emissions from rice paddies: A study on the cultivar and transplanting date. Science of The Total Environment, 902, 166174. https://doi.org/10.1016/j.scitotenv.2023.166174

Meng, T., Zhang, X., Ge, J., Chen, X., Yang, Y., Zhu, G., . . . Dai, Q. (2021). Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields. Field Crops Research, 271, 108255. https://doi.org/10.1016/j.fcr.2021.108255

Minamikawa, K., Tokida, T., Sudo, S., Padre, A., & Yagi, K. (2015). Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan, 76. https://globalresearchalliance.org/wp-content/uploads/2018/02/Guidelines-for-Measuring-CH4-and-N2O-Emissions-from-Rice-Paddies-by-Manually-Operated-Closed-Chamber-Method-2015.pdf

Munawaroh, U., Komariah, K., Ariyanto, D. P., Zaki, M. K., & Noda, K. (2022). Estimates of methane and nitrous oxide emission from a rice field in Central Java, Indonesia, based on the DeNitrification DeComposition model. Sains Tanah - Journal of Soil Science and Agroclimatology, 19(1), 1-11. https://doi.org/10.20961/stjssa.v19i1.56928

Nguyen, B. T., Trinh, N. N., & Bach, Q.-V. (2020). Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition. Applied Soil Ecology, 152, 103531. https://doi.org/10.1016/j.apsoil.2020.103531

Olsson, L., Ye, S., Yu, X., Wei, M., Krauss, K. W., & Brix, H. (2015). Factors influencing CO<sub>2</sub> and CH<sub>4</sub> emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences, 12(16), 4965-4977. https://doi.org/10.5194/bg-12-4965-2015

Pam Hazelton, B. M. (2007). Interpreting Soil Test Results: What do all the Numbers mean? CSIRO Publishin. https://doi.org/10.1071/9780643094680

Pramono, A., Adriany, T. A., Susilawati, H. L., & Sutriadi, M. T. (2021). Effects of rice cultivar on the net greenhouse gas emission under continuous flooding and alternate wetting and drying irrigations in paddy field. IOP Conference Series: Earth and Environmental Science, 648(1), 012095. https://doi.org/10.1088/1755-1315/648/1/012095

Qin, X., Li, Y. e., Wang, H., Li, J., Wan, Y., Gao, Q., . . . Fan, M. (2015). Effect of rice cultivars on yield-scaled methane emissions in a double rice field in South China. Journal of Integrative Environmental Sciences, 12(sup1), 47-66. https://doi.org/10.1080/1943815X.2015.1118388

Qu, W., Li, J., Han, G., Wu, H., Song, W., & Zhang, X. (2019). Effect of salinity on the decomposition of soil organic carbon in a tidal wetland. Journal of Soils and Sediments, 19(2), 609-617. https://doi.org/10.1007/s11368-018-2096-y

Ranganathan, J., Vennard, D., Waite, R., Lipinski, B., Searchinger, T., & Dumas, P. (2016). Shifting Diets for a Sustainable Food Future. World Resources Institute. https://www.wri.org/research/shifting-diets-sustainable-food-future

Romdon, A. S., Kurniyati, E., Bahri, S., & Pramono, J. (2014). Kumpulan DESKRIPSI VARIETAS PADI. Central Java Assesment Institute for Agricultural Technology. Indonesian Agency for Agricultural Research and Development (IAARD). https://repository.pertanian.go.id/handle/123456789/12696

Rumanti, I. A., Sitaresmi, T., & Nugraha, Y. (2020). Rice tolerance variation to long-term stagnant flooding and germination ability under an-aerobic environment. IOP Conference Series: Earth and Environmental Science, 423(1), 012048. https://doi.org/10.1088/1755-1315/423/1/012048

Soremi, P. A. S., Chirinda, N., Graterol, E., & Alvarez, M. F. (2023). Potential of rice (Oryza sativa L.) cultivars to mitigate methane emissions from irrigated systems in Latin America and the Caribbean. All Earth, 35(1), 149-157. https://doi.org/10.1080/27669645.2023.2207941

Sun, M., Zhang, H., Dong, J., Gao, F., Li, X., & Zhang, R. (2018). A comparison of CH4 emissions from coastal and inland rice paddy soils in China. CATENA, 170, 365-373. https://doi.org/10.1016/j.catena.2018.06.035

Tariq, A., Jensen, L. S., Sander, B. O., de Tourdonnet, S., Ambus, P. L., Thanh, P. H., . . . de Neergaard, A. (2018). Paddy soil drainage influences residue carbon contribution to methane emissions. Journal of Environmental Management, 225, 168-176. https://doi.org/10.1016/j.jenvman.2018.07.080

Tong, C., Cadillo-Quiroz, H., Zeng, Z. H., She, C. X., Yang, P., & Huang, J. F. (2017). Changes of community structure and abundance of methanogens in soils along a freshwater–brackish water gradient in subtropical estuarine marshes. Geoderma, 299, 101-110. https://doi.org/10.1016/j.geoderma.2017.03.026

Vo, T. B. T., Wassmann, R., Tirol-Padre, A., Cao, V. P., MacDonald, B., Espaldon, M. V. O., & Sander, B. O. (2018). Methane emission from rice cultivation in different agro-ecological zones of the Mekong river delta: seasonal patterns and emission factors for baseline water management. Soil Science and Plant Nutrition, 64(1), 47-58. https://doi.org/10.1080/00380768.2017.1413926

Wihardjaka, A., Yulianingsih, E., & Yulianingrum, H. (2020). Methane flux from high-yielding Inpari rice varieties in Central Java, Indonesia. Sains Tanah - Journal of Soil Science and Agroclimatology, 17(2), 129-134. https://doi.org/10.20961/stjssa.v17i2.42729

Win, E. P., Win, K. K., Bellingrath-Kimura, S. D., & Oo, A. Z. (2021). Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils. PLOS ONE, 16(6), e0253755. https://doi.org/10.1371/journal.pone.0253755

Xu, Y., Ge, J., Tian, S., Li, S., Nguy-Robertson, A. L., Zhan, M., & Cao, C. (2015). Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Science of The Total Environment, 505, 1043-1052. https://doi.org/10.1016/j.scitotenv.2014.10.073

Refbacks

  • There are currently no refbacks.