Effect of Microbial Fuel Cell, fertilizer, and plant spacing on nitrogen dynamics in paddy soil
Abstract
Nitrogen is one of the primary nutrients required for growing rice. Still, the efficiency of urea fertilizer application is very low (20-40%) due to the nitrogen loss process, one of which is denitrification. This study aims to determine the effects of combining Microbial Fuel Cell (MFC), plant spacing, and fertilization on nitrogen dynamics in paddy fields. The combination of treatments are expected to reduce the nitrogen loss in paddy fields, and plants can absorb it efficiently. A total of six treatments included Microbial Fuel Cell (MFC) (2 levels: without MFC and with MFC), plant spacing (2 levels: conventional spacing 25 cm × 25 cm and jajar legowo spacing 25 cm × 12.5 cm × 50 cm), and fertilization (2 levels: without fertilizer and with 500 kg ha-1 of NPK fertilizer), with three replications for each combination. The observed parameters included total soil nitrogen, nitrate, nitrogen uptake, chlorophyll, nitrogen-fixing and denitrifying bacteria, and N2O gas emissions. The results showed that combining MFC, conventional spacing, and NPK fertilizer in the paddy fields resulted in a high total soil nitrogen (0.44%). The results showed different effects on total soil nitrogen in the MFC and fertilization treatments, leading to increased nitrate levels, nutrient uptake, and chlorophyll. Increasing total soil nitrogen significantly contributes to leaf development and significantly aids photosynthesis. The integration of MFC and fertilization observed in this study resulted in a real impact on nitrogen dynamics in paddy fields. This combined treatment effectively reduces total nitrogen loss due to denitrification in paddy fields, thereby increasing the efficiency of uptake by plants.
Keywords
Full Text:
PDFReferences
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability [Review]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.628379
Adviento-Borbe, M. A. A., & Linquist, B. (2016). Assessing fertilizer N placement on CH4 and N2O emissions in irrigated rice systems. Geoderma, 266, 40-45. https://doi.org/10.1016/j.geoderma.2015.11.034
Agegnehu, G., Nelson, P. N., & Bird, M. I. (2016). Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil and Tillage Research, 160, 1-13. https://doi.org/10.1016/j.still.2016.02.003
Ahmed, M., Rauf, M., Mukhtar, Z., & Saeed, N. A. (2017). Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, 24(35), 26983-26987. https://doi.org/10.1007/s11356-017-0589-7
Alhammad, B. A., Mohamed, A., Raza, M. A., Ngie, M., Maitra, S., Seleiman, M. F., . . . Gitari, H. I. (2023). Optimizing Productivity of Buffel and Sudan Grasses Using Optimal Nitrogen Fertilizer Application under Arid Conditions. Agronomy, 13(8), 2146. https://doi.org/10.3390/agronomy13082146
Anshori, A., Sunarminto, B. H., Haryono, E., & Mujiyo, M. (2018). Potential Production of CH4 And N2O in Soil Profiles from Organic and Conventional Rice Fields. Sains Tanah - Journal of Soil Science and Agroclimatology, 15(1), 7. https://doi.org/10.15608/stjssa.v15i1.19324
Astuti, H. B., & Wibawa, W. (2014). Penerapan Teknologi Pemupukan Padi Sawah Di Provinsi Bengkulu. Jurnal AGRISEP: Kajian Masalah Sosial Ekonomi Pertanian dan Agribisnis, 13(1), 51-59. https://doi.org/10.31186/jagrisep.13.1.51-59
Barłóg, P., Grzebisz, W., & Łukowiak, R. (2022). Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants, 11(14), 1855. https://doi.org/10.3390/plants11141855
Basuki, B., & Vega Kartika, S. (2019). Efektifitas Dolomit dalam Mempertahankan PH Tanah Inceptisol Perkebunan Tebu Blimbing Djatiroto. Buletin Tanaman Tembakau, Serat dan Minyak Industri, 11(2), 58-64. https://doi.org/10.21082/btsm.v11n2.2019.58-64
Bijay, S., & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 518. https://doi.org/10.1007/s42452-021-04521-8
Brake, L. D., McNabb, W. M., & Fred Hazel, J. (1958). A spectrophotometric method for the determination of nickel. Analytica Chimica Acta, 19, 39-42. https://doi.org/10.1016/S0003-2670(00)88116-7
Bramston-Cook, R. (2008). New Method for the Determination of Nitrous Oxide in Ambient Air and Vehicle Exhaust Using Gas Chromatography and Electron Capture Detection. EPA/AWMA Symposium on Air Quality Measurement Methods and Technology,
Brito, J., Valle, A., Almenglo, F., Ramírez, M., & Cantero, D. (2020). Characterization of eubacterial communities by Denaturing Gradient Gel Electrophoresis (DGGE) and Next Generation Sequencing (NGS) in a desulfurization biotrickling filter using progressive changes of nitrate and nitrite as final electron acceptors. New Biotechnology, 57, 67-75. https://doi.org/10.1016/j.nbt.2020.03.001
Chen, S.-R., Zhong, H.-L., Chen, H., Wu, G.-K., Zhao, M.-X., Wang, Y., . . . Sun, J.-J. (2023). Bidirectional Electron Transfer and Nitrogen Fixation Performance in Azospirillum Humicireducens Biofilms. Available at SSRN 4572064. https://doi.org/10.2139/ssrn.4572064
Chen, Y., Li, S., Zhang, Y., Li, T., Ge, H., Xia, S., . . . Liu, L. (2019). Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biology and Biochemistry, 129, 191-200. https://doi.org/10.1016/j.soilbio.2018.11.015
Comar, C. L., & Zscheile, F. P. (1942). Analysis of Plant Extracts For Chlorophylls A and B By a Photoelectric Spectrophotometric Method1. Plant Physiology, 17(2), 198-209. https://doi.org/10.1104/pp.17.2.198
Danapriatna, N. (2010). Biokimia penambatan nitrogen oleh bakteri non simbiotik. Cefars: jurnal agribisnis dan pengembangan wilayah, 1(2), 1-10. https://jurnal.unismabekasi.ac.id/index.php/cefars/article/view/96
Dang, K., Ran, C., Tian, H., Gao, D., Mu, J., Zhang, Z., . . . Guo, L. (2023). Combined Effects of Straw Return with Nitrogen Fertilizer on Leaf Ion Balance, Photosynthetic Capacity, and Rice Yield in Saline-Sodic Paddy Fields. Agronomy, 13(9), 2274. https://doi.org/10.3390/agronomy13092274
Dass, A., Chandra, S., Choudhary, A. K., Singh, G., & Sudhishri, S. (2016). Influence of field re-ponding pattern and plant spacing on rice root–shoot characteristics, yield, and water productivity of two modern cultivars under SRI management in Indian Mollisols. Paddy and Water Environment, 14(1), 45-59. https://doi.org/10.1007/s10333-015-0477-z
Drescher, G. L., da Silva, L. S., Sarfaraz, Q., Roberts, T. L., Nicoloso, F. T., Schwalbert, R., & Marques, A. C. R. (2020). Available Nitrogen in Paddy Soils Depth: Influence on Rice Root Morphology and Plant Nutrition. Journal of Soil Science and Plant Nutrition, 20(3), 1029-1041. https://doi.org/10.1007/s42729-020-00190-5
Fan, L., Dippold, M. A., Ge, T., Wu, J., Thiel, V., Kuzyakov, Y., & Dorodnikov, M. (2020). Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes. Soil Biology and Biochemistry, 141, 107685. https://doi.org/10.1016/j.soilbio.2019.107685
Fu, H., Cui, D., & Shen, H. (2021). Effects of Nitrogen Forms and Application Rates on Nitrogen Uptake, Photosynthetic Characteristics and Yield of Double-Cropping Rice in South China. Agronomy, 11(1), 158. https://doi.org/10.3390/agronomy11010158
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., . . . Zhang, F. S. (2010). Significant Acidification in Major Chinese Croplands. Science, 327(5968), 1008-1010. https://doi.org/10.1126/science.1182570
Guo, X., Chen, L., Zheng, R., Zhang, K., Qiu, Y., & Yue, H. (2019). Differences in Soil Nitrogen Availability and Transformation in Relation to Land Use in the Napahai Wetland, Southwest China. Journal of Soil Science and Plant Nutrition, 19(1), 92-97. https://doi.org/10.1007/s42729-019-0013-0
Gupta, K., Kumar, R., Baruah, K. K., Hazarika, S., Karmakar, S., & Bordoloi, N. (2021). Greenhouse gas emission from rice fields: a review from Indian context. Environmental Science and Pollution Research, 28(24), 30551-30572. https://doi.org/10.1007/s11356-021-13935-1
Hachiya, T., & Sakakibara, H. (2016). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68(10), 2501-2512. https://doi.org/10.1093/jxb/erw449
Harter, J., Guzman-Bustamante, I., Kuehfuss, S., Ruser, R., Well, R., Spott, O., . . . Behrens, S. (2016). Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports, 6(1), 39574. https://doi.org/10.1038/srep39574
Hatta, M. (2012). Uji jarak tanam sistem legowo terhadap pertumbuhan dan hasil beberapa varietas padi pada metode SRI. Jurnal Agrista, 16(2), 87-93. https://jurnal.usk.ac.id/agrista/article/view/291
Jiang, W., Wang, K., Wu, Q., Dong, S., Liu, P., & Zhang, J. (2013). Effects of narrow plant spacing on root distribution and physiological nitrogen use efficiency in summer maize. The Crop Journal, 1(1), 77-83. https://doi.org/10.1016/j.cj.2013.07.011
Khalida, R., & Lontoh, A. P. (2019). Manajemen Pemupukan Kelapa Sawit (Elaeis Guineensis Jacq.), Studi Kasus pada Kebun Sungai Sagu, Riau. Buletin Agrohorti, 7(2), 238-245. https://doi.org/10.29244/agrob.7.2.238-245
Kirk, P. L. (1950). Kjeldahl Method for Total Nitrogen. Analytical Chemistry, 22(2), 354-358. https://doi.org/10.1021/ac60038a038
Lan, T., Li, M., Han, Y., Deng, O., Tang, X., Luo, L., . . . Gao, X. (2020). How are annual CH4, N2O, and NO emissions from rice–wheat system affected by nitrogen fertilizer rate and type? Applied Soil Ecology, 150, 103469. https://doi.org/10.1016/j.apsoil.2019.103469
Liu, J., Shu, A., Song, W., Shi, W., Li, M., Zhang, W., . . . Gao, Z. (2021). Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma, 404, 115287. https://doi.org/10.1016/j.geoderma.2021.115287
Liu, S., Xue, H., Wang, M., Feng, X., & Lee, H.-S. (2022). The role of microbial electrogenesis in regulating methane and nitrous oxide emissions from constructed wetland-microbial fuel cell. International Journal of Hydrogen Energy, 47(63), 27279-27292. https://doi.org/10.1016/j.ijhydene.2022.06.063
Liu, X., Chen, L., Hua, Z., Mei, S., Wang, P., & Wang, S. (2020). Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region. Environmental Science and Pollution Research, 27(8), 8386-8394. https://doi.org/10.1007/s11356-019-07536-2
Lv, H., Zhao, Y., Wang, Y., Wan, L., Wang, J., Butterbach-Bahl, K., & Lin, S. (2020). Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma, 363, 114156. https://doi.org/10.1016/j.geoderma.2019.114156
Ma, W., Tang, S., Dengzeng, Z., Zhang, D., Zhang, T., & Ma, X. (2022). Root exudates contribute to belowground ecosystem hotspots: A review [Review]. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.937940
Magfiroh, N., Lapanjang, I. M., & Made, U. (2017). Pengaruh jarak tanam terhadap pertumbuhan dan hasil tanaman padi (Oryza sativa l.) pada pola jarak tanam yang berbeda dalam sistem tabela. Agrotekbis: Jurnal Ilmu Pertanian, 5(2), 212-221. http://jurnal.faperta.untad.ac.id/index.php/agrotekbis/article/view/126
Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants, 9(1), 97. https://doi.org/10.3390/plants9010097
Mahmud, K., Panday, D., Mergoum, A., & Missaoui, A. (2021). Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability, 13(4), 2400. https://doi.org/10.3390/su13042400
Mania, D., Heylen, K., van Spanning, R. J. M., & Frostegård, Å. (2016). Regulation of nitrogen metabolism in the nitrate-ammonifying soil bacterium Bacillus vireti and evidence for its ability to grow using N2O as electron acceptor. Environmental Microbiology, 18(9), 2937-2950. https://doi.org/10.1111/1462-2920.13124
Mu, X., & Chen, Y. (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 158, 76-82. https://doi.org/10.1016/j.plaphy.2020.11.019
Mukherjee, R., & Sen, S. (2021). Agricultural sustainability through nitrogen fixation: approaches and techniques. Harvest, 6(1), 48-55. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3873195
Munawaroh, U., Komariah, K., Ariyanto, D. P., Zaki, M. K., & Noda, K. (2022). Estimates of methane and nitrous oxide emission from a rice field in Central Java, Indonesia, based on the DeNitrification DeComposition model. Sains Tanah - Journal of Soil Science and Agroclimatology, 19(1), 11. https://doi.org/10.20961/stjssa.v19i1.56928
Mussarat, M., Shair, M., Muhammad, D., Mian, I. A., Khan, S., Adnan, M., . . . Khan, F. (2021). Accentuating the Role of Nitrogen to Phosphorus Ratio on the Growth and Yield of Wheat Crop. Sustainability, 13(4), 2253. https://doi.org/10.3390/su13042253
Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76, 81-89. https://doi.org/10.1016/j.rser.2017.03.064
Paśmionka, I. B., Bulski, K., & Boligłowa, E. (2021). The Participation of Microbiota in the Transformation of Nitrogen Compounds in the Soil—A Review. Agronomy, 11(5), 977. https://doi.org/10.3390/agronomy11050977
Permatasari, G. Y., Kesumadewi, A. A. I., & Suwastika, A. A. N. G. (2019). Dinamika Amonium dan Nitrat Lahan Sawah Latosol pada Budidaya Konvensional Padi Lokal dan Hibrida di Subak Jatiluwih. Agrotrop : Journal on Agriculture Science(2), 135-145%V 139. https://doi.org/10.24843/AJoAS.2019.v09.i02.p04
Rahayu, A., Utami, S. R., & Rayes, M. L. (2017). Karakteristikdan Klasifikasi Tanah Pada Lahan Kering dan Lahan Yang Disawahkan Di Kecamatan Perak Kabupaten Jombang. Jurnal Tanah dan Sumberdaya Lahan, 1(2), 79-87. https://jtsl.ub.ac.id/index.php/jtsl/article/view/115
Ranatunga, T., Hiramatsu, K., & Onishi, T. (2018). Controlling the process of denitrification in flooded rice soils by using microbial fuel cell applications. Agricultural Water Management, 206, 11-19. https://doi.org/10.1016/j.agwat.2018.04.041
Rashid, M. M., Jahan, M., & Islam, K. S. (2016). Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants. Rice Science, 23(3), 119-131. https://doi.org/10.1016/j.rsci.2016.04.001
Read, S. T., Dutta, P., Bond, P. L., Keller, J., & Rabaey, K. (2010). Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiology, 10(1), 98. https://doi.org/10.1186/1471-2180-10-98
Saito, T., Mehanna, M., Wang, X., Cusick, R. D., Feng, Y., Hickner, M. A., & Logan, B. E. (2011). Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource Technology, 102(1), 395-398. https://doi.org/10.1016/j.biortech.2010.05.063
Santos, A., van Aerle, R., Barrientos, L., & Martinez-Urtaza, J. (2020). Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Computational and Structural Biotechnology Journal, 18, 296-305. https://doi.org/10.1016/j.csbj.2020.01.005
Sedlar, K. (2018). Methods for Comparative Analysis of Metagenomic Data [Doctoral Thesis, Brno University of Technology, Department of Biomedical Engineering]. https://theses.eurasip.org/theses/799/methods-for-comparative-analysis-of-metagenomic/
Sethy, P. K., Barpanda, N. K., Rath, A. K., & Behera, S. K. (2020). Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5703-5711. https://doi.org/10.1007/s12652-020-01938-8
Sharma, L. K., & Bali, S. K. (2018). A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability, 10(1), 51. https://doi.org/10.3390/su10010051
Shetty, R., & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, 10(1), 12249. https://doi.org/10.1038/s41598-020-69262-x
Singh, B.-. (2018). Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy, 8(4), 48. https://doi.org/10.3390/agronomy8040048
Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/plants9081011
Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26(3), R94-R98. https://doi.org/10.1016/j.cub.2015.12.021
Suhendrata, T. (2018). Pengaruh Jarak Tanam Pada Sistem Tanam Jajar Legowo terhadap Pertumbuhan, Produktivitas dan Pendapatan Petani Padi Sawah di Kabupaten Sragen Jawa Tengah. 2018, 13(2), 7. https://doi.org/10.20961/sepa.v13i2.21030
Syahputra, K., Rusmana, I., & Widyastuti, U. (2011). Isolasi dan karakterisasi bakteri denitrifikasi sebagai agen bioremediasi nitrogen anorganik. Jurnal Riset Akuakultur, 6(2), 197-209. https://doi.org/10.15578/jra.6.2.2011.197-209
Tan, K. H. (2005). Soil sampling, preparation, and analysis. CRC press. https://doi.org/10.1201/9781482274769
Timilsina, A., Bizimana, F., Pandey, B., Yadav, R. K. P., Dong, W., & Hu, C. (2020). Nitrous Oxide Emissions from Paddies: Understanding the Role of Rice Plants. Plants, 9(2), 180. https://doi.org/10.3390/plants9020180
Tiso, M., & Schechter, A. N. (2015). Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions. PLOS ONE, 10(3), e0119712. https://doi.org/10.1371/journal.pone.0119712
Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An Overview of Electron Acceptors in Microbial Fuel Cells [Review]. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00643
Van Meter, K. J., Basu, N. B., & Van Cappellen, P. (2017). Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochemical Cycles, 31(1), 2-23. https://doi.org/10.1002/2016GB005498
Vijay, A., Sonawane, J. M., & Chhabra, M. (2022). Denitrification process in microbial fuel cell: A comprehensive review. Bioresource Technology Reports, 17, 100991. https://doi.org/10.1016/j.biteb.2022.100991
Wang, N., Chen, Z., Li, H.-B., Su, J.-Q., Zhao, F., & Zhu, Y.-G. (2015). Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. Journal of Soils and Sediments, 15(4), 926-936. https://doi.org/10.1007/s11368-014-1056-4
Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543-550. https://doi.org/10.1016/j.biombioe.2015.11.006
Widodo, T. W., & Damanhuri, F. N. U. (2021). Pengaruh Dosis Nitrogen terhadap Pembentukan Tunas dan Pertumbuhan Padi Ratun (Oryza sativa L.). Jurnal Ilmiah Inovasi, 21(1), 50-53. https://doi.org/10.25047/jii.v21i1.2635
Winarso, S., Mandala, M., Sulistiyowati, H., Romadhona, S., Hermiyanto, B., & Subchan, W. (2020). The decomposition and efficiency of NPK-enriched biochar addition on Ultisols with soybean. Sains Tanah - Journal of Soil Science and Agroclimatology, 17(1), 7. https://doi.org/10.20961/stjssa.v17i1.37608
Xiong, L., Liu, X., Vinci, G., Spaccini, R., Drosos, M., Li, L., . . . Pan, G. (2019). Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air. Soil Biology and Biochemistry, 137, 107544. https://doi.org/10.1016/j.soilbio.2019.107544
Yang, J., Guo, W., Wang, F., Wang, F., Zhang, L., Zhou, B., . . . Yang, W. (2021). Dynamics and influencing factors of soluble organic nitrogen in paddy soil under different long-term fertilization treatments. Soil and Tillage Research, 212, 105077. https://doi.org/10.1016/j.still.2021.105077
Yousaf, M., Li, J., Lu, J., Ren, T., Cong, R., Fahad, S., & Li, X. (2017). Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Reports, 7(1), 1270. https://doi.org/10.1038/s41598-017-01412-0
Zhang, L., Jiang, M., & Zhou, S. (2022). Conversion of nitrogen and carbon in enriched paddy soil by denitrification coupled with anammox in a bioelectrochemical system. Journal of Environmental Sciences, 111, 197-207. https://doi.org/10.1016/j.jes.2021.03.033
Zhang, Z., Gao, S., & Chu, C. (2020). Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theoretical and Applied Genetics, 133(5), 1365-1384. https://doi.org/10.1007/s00122-019-03527-6
Zhao, H., Zhao, J., Li, F., & Li, X. (2016). Performance of Denitrifying Microbial Fuel Cell with Biocathode over Nitrite [Original Research]. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00344
Refbacks
- There are currently no refbacks.