Exploring El Nino effects on agricultural area using Landsat images analysis: A case study in Bondowoso Regency, Indonesia

Hasbi Mubarak Suud, Dwi Erwin Kusbianto

Abstract

El Nino, which hit Indonesia in 2023, poses severe food security threats due to the high dry season with no rainfall and minimal cloud cover and can trigger serious drought problems if it happen for a long time. This study aimed to explore the impact on agricultural land in Bondowoso Regency during El Nino events. The analysis in this study primarily uses land surface temperature (LST) and normalized difference vegetative index (NDVI) map distribution. The Landsat data from USGS are collected and processed to become LST and NDVI distribution maps. Data analysis focused on the agricultural area layers based on data from the Indonesia geospatial portal. Referring to the LST and NDVI map distribution, the notable rise of LST starts in August 2023, and the peak is in October 2023. Around 46% of areas in the Bondowoso regency are detected as hotspot areas, which had LST above 30oC in October 2023. El Nino affects the irrigated lands and rain-fed fields more than the plantations. The NDVI alteration data does not show that the Bondowoso Regency is experiencing extraordinary drought due to the short-term impact of El Nino. However, the emergence of numerous areas in the moderate NDVI category warns that stress affecting vegetation is starting to occur. Mitigation plans should be prepared for the long-term impact of El Nino, particularly in the hotspot areas. This study could be a comprehension tool for the government and farmers to prepare mitigation plans.

Keywords

Drought; Irrigated Lands; Land Surface Temperature (LST); NDVI; Vegetation Stress

Full Text:

PDF

References

Almouctar, M. A. S., Wu, Y., Zhao, F., & Qin, C. (2024). Drought analysis using normalized difference vegetation index and land surface temperature over Niamey region, the southwestern of the Niger between 2013 and 2019. Journal of Hydrology: Regional Studies, 52, 101689. https://doi.org/10.1016/j.ejrh.2024.101689

Angus, J., Atkin, O., Brummell, D., Farrell, A., Gorsuch, P., Hewett, E., . . . Rawson, H. (2018). Temperature and acclimation - Plant response to high temperature. In R. Munns (Ed.), Plants in Action (2nd ed.). https://rseco.org/content/1471-plant-response-high-temperature.html

Ardiansyah, W., Nuarsa, I. W., & Bhayunagiri, I. B. P. (2021). Analisis Daerah Rawan Bencana Kekeringan Berbasis Sistem Informasi Geografis di Kabupaten Bondowoso Provinsi Jawa Timur. Jurnal Agroekoteknologi Tropika, 10(4), 417-427. https://www.scribd.com/document/711027144/Analisis-daerah-rawan-kekeringan

Aziz, A., Umar, M., Mansha, M., Khan, M. S., Javed, M. N., Gao, H., . . . Abdullah, S. (2018). Assessment of drought conditions using HJ-1A/1B data: a case study of Potohar region, Pakistan. Geomatics, Natural Hazards and Risk, 9(1), 1019-1036. https://doi.org/10.1080/19475705.2018.1499558

BIG. (2021). Indonesia Geospatial Portal. Badan Informasi Geospasial - Satu Peta Untuk Negeri. https://tanahair.indonesia.go.id/portal-web

BMKG. (2023a). Analisis tingkat ketersediaan air bagi tanaman. https://staklim-jatim.bmkg.go.id/index.php/using-joomla/extensions/components/search-component/search?searchword=tingkat%20ketersediaan%20air%20bagi%20tanaman&searchphrase=all

BMKG. (2023b). Data Online - Pusat Database - BMKG. https://dataonline.bmkg.go.id/data_iklim

BNPB. (2023). Kekeringan di Pulau Jawa. https://data.bnpb.go.id/pages/kekeringan-pulau-jawa

BPS Bondowoso. (2023). Keadaan Ketenagakerjaan Kabupaten Bondowoso Agustus 2023 https://bondowosokab.bps.go.id/pressrelease/2023/12/12/20/keadaan-ketenagakerjaan-kabupaten-bondowoso-agustus-2023.html

CNN Indonesia. (2024). El Nino Berlanjut di 2024, Simak Nasib Curah Hujan di Jawa. https://cnnindonesia.me/teknologi/20240102033522-641-1044139/el-nino-berlanjut-di-2024-simak-nasib-curah-hujan-di-jawa

Dimyati, M., Rustanto, A., Ash Shidiq, I. P., Indratmoko, S., Siswanto, Dimyati, R. D., . . . Auni, R. (2024). Spatiotemporal relation of satellite-based meteorological to agricultural drought in the downstream Citarum watershed, Indonesia. Environmental and Sustainability Indicators, 22, 100339. https://doi.org/10.1016/j.indic.2024.100339

Eboy, O. V., & Kemarau, R. A. (2023a). Analysis of Extreme Heat Land Surface Temperature at a Tropical City (1988-2022): A Study on the Variability of Hot Spot during El Niño Southern Oscillation (ENSO). Science and Technology Indonesia, 8(3), 388-396. https://doi.org/10.26554/sti.2023.8.3.388-396

Eboy, O. V., & Kemarau, R. A. (2023b). Study Variability of the Land Surface Temperature of Land Cover during El Niño Southern Oscillation (ENSO) in a Tropical City. Sustainability, 15(11), 8886. https://doi.org/10.3390/su15118886

Ghobadi, Y., Pradhan, B., Shafri, H. Z. M., & Kabiri, K. (2015). Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran. Arabian Journal of Geosciences, 8(1), 525-537. https://doi.org/10.1007/s12517-013-1244-3

Guha, S., & Govil, H. (2021). An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environment, Development and Sustainability, 23(2), 1944-1963. https://doi.org/10.1007/s10668-020-00657-6

Hussain, S., Raza, A., Abdo, H. G., Mubeen, M., Tariq, A., Nasim, W., . . . Al Dughairi, A. A. (2023). Relation of land surface temperature with different vegetation indices using multi-temporal remote sensing data in Sahiwal region, Pakistan. Geoscience Letters, 10(1), 33. https://doi.org/10.1186/s40562-023-00287-6

Iskandar, I., Lestrai, D. O., & Nur, M. (2019). Impact of El Niño and El Niño Modoki Events on Indonesian Rainfall. Makara Journal of Science, 23(4), 7. https://doi.org/10.7454/mss.v23i4.11517

Jeevalakshmi, D., Reddy, S. N., & Manikiam, B. (2017). Land surface temperature retrieval from LANDSAT data using emissivity estimation. International Journal of Applied Engineering Research, 12(20), 9679-9687. https://www.ripublication.com/ijaer17/ijaerv12n20_57.pdf

Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., . . . Goldberg, A. (2010). Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. Journal of Climate, 23(3), 618-633. https://doi.org/10.1175/2009JCLI2900.1

Kashkimbayeva, N. M., Kaldarova, M. Z., Tusupov, J. A., Likhachevsky, D. V., & Farabi, E. K. (2020). Description USGS and Calculation of NDVI in QGIS Journal of Theoretical and Applied Information Technology, 98(11). https://www.jatit.org/volumes/Vol98No11/7Vol98No11.pdf

Kemarau, R. A., & Eboy, O. V. (2021). Application Remote Sensing in Study Influence Of El Niño incident in 2015/2016 On the Amount of Rainfall in Sarawak. Journal of Techno-Social, 13(1), 12-22. https://doi.org/10.30880/JTS.2021.13.01.002

Kemarau, R. A., & Eboy, O. V. (2023). Exploring the Impact of El Niño–Southern Oscillation (ENSO) on Temperature Distribution Using Remote Sensing: A Case Study in Kuching City. Applied Sciences, 13(15), 8861. https://doi.org/10.3390/app13158861

Meshesha, K. S., Shifaw, E., Kassaye, A. Y., Tsehayu, M. A., Eshetu, A. A., & Wondemagegnehu, H. (2024). Evaluating the relationship of vegetation dynamics with rainfall and land surface temperature using geospatial techniques in South Wollo zone, Ethiopia. Environmental Challenges, 15, 100895. https://doi.org/10.1016/j.envc.2024.100895

Moses, O., Blamey, R. C., & Reason, C. J. C. (2022). Relationships between NDVI, river discharge and climate in the Okavango River Basin region. International Journal of Climatology, 42(2), 691-713. https://doi.org/10.1002/joc.7267

Muchsin, F., Supriatna, Harmoko, A., Prasasti, I., Rahayu, M. I., Fibriawati, L., & Pradhono, K. A. (2021). Comparison of The Radiometric Correction Landsat-8 Image Based on Object Spectral Response and Vegetation Index. International Journal of Remote Sensing and Earth Sciences, 18(2), 177-188. https://jurnal.lapan.go.id/index.php/ijreses/article/view/3632

Pande, C. B., Egbueri, J. C., Costache, R., Sidek, L. M., Wang, Q., Alshehri, F., . . . Chandra Pal, S. (2024). Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development. Journal of Cleaner Production, 444, 141035. https://doi.org/10.1016/j.jclepro.2024.141035

Radar Jember. (2023). El Nino Ancam Ketahanan Pangan. https://radarjember.jawapos.com/bondowoso/792652822/el-nino-ancam-ketahanan-pangan

Safitri, S. (2015). El Nino, La Nina dan dampaknya terhadap kehidupan di Indonesia. Criksetra: Jurnal Pendidikan Sejarah, 4(2). https://ejournal.unsri.ac.id/index.php/criksetra/article/view/4786

Santika, T., Muhidin, S., Budiharta, S., Haryanto, B., Agus, F., Wilson, K. A., . . . Po, J. Y. T. (2023). Deterioration of respiratory health following changes to land cover and climate in Indonesia. One Earth, 6(3), 290-302. https://doi.org/10.1016/j.oneear.2023.02.012

Suud, H. M., Dinata, F., & Sinaga, D. (2023). Studi Usaha Perkebunan Berkelanjutan Tembakau Khas Kabupaten Bondowoso, Jawa Timur. Prosiding Seminar Nasional Pembangunan Dan Pendidikan Vokasi Pertanian,

USGS. (2018). Landsat Surface Temperature (ST) Product Guide (LSDS-1330; Version 2.0). Department of the Interior, U.S. Geological Survey. https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1330-LandsatSurfaceTemperature_ProductGuide-v2.pdf

Whitfield, S., Beauchamp, E., Boyd, D. S., Burslem, D., Byg, A., Colledge, F., . . . White, P. C. L. (2019). Exploring temporality in socio-ecological resilience through experiences of the 2015–16 El Niño across the Tropics. Global Environmental Change, 55, 1-14. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2019.01.004

Zaitunah, A., Samsuri, Ahmad, A. G., & Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. IOP Conference Series: Earth and Environmental Science, 126(1), 012112. https://doi.org/10.1088/1755-1315/126/1/012112

Refbacks

  • There are currently no refbacks.