The application of organic liquid fertilizer C. glomerata and NPK Phonska to enhance agronomic efficiency in maize cultivation on Alluvial soil

Jamilah Jamilah, Aguswanto Aguswanto, Ediwirman Ediwirman, Sunadi Sunadi, Prima Novia

Abstract

Fertilization is crucial in maize cultivation, and inorganic fertilizers can be expensive. Therefore, it is essential to provide alternative fertilizers to reduce dependence on inorganic fertilizers. This study investigated the role of organic liquid fertilizer C. glomerata (OLFC) in increasing the efficiency of NPK Phonska fertilizer, influencing soil chemical reactions, and enhancing the growth and yield of maize on alluvial soils. The materials used were hybrid maize of the Pioneer 32, OLFC, and NPK Phonska (15-15-15). The experiment was arranged in a completely randomized design (CRD) in factorial. The OLFC was applied at 0 mL L-1, 5 mL L-1, and 10 mL L-1; NPK Phonska Fertilizer at 0, 150, and 300 kg ha-1 in three replications. The data obtained were statistically analyzed using ANOVA at 5%. Level of significance and mean separation using the LSD at 5% probability. The following parameters were evaluated: soil chemical properties and agronomic factors, such as the height of crop, net assimilation rate, relative growth rate, weight of 100 seeds, yield, and agronomic efficiency (AE). The highest maize yield recorded was 4.83 tons per hectare, achieved by applying 150 NPK Phonska kg per hectare, supported by a fertilization efficiency of 11.28%. Adding 5 mL per liter of OLFC every two weeks to maize plants resulted in the highest AE, reaching 21.81%.

Keywords

Agronomic efficiency; Fertilizer efficiency; Hybrid maize; Nutrient uptake; Soil chemical properties

Full Text:

PDF

References

Abagyeh, S. O. I., Idoga, S., & Agber, P. I. (2016). Land suitability evaluation for maize (Zea mays) production in selected sites of the Mid-Benue valley, Nigeria. International Journal of Agricultural Policy and Research, 4(3), 46-51. https://doi.org/10.15739/IJAPR.16.007

Alves, R. M., da Silva, M. A. D., da, S., Elania Freire, Hermínio, P. J., & Gomes-Junior, F. G. (2022). Oxidative damage associated with salt stress during germination and initial development of purple corn seedlings. Acta Scientiarum. Agronomy, 44(1), e55760. https://doi.org/10.4025/actasciagron.v44i1.55760

Asfaw, M. D. (2022). Effects of animal manures on growth and yield of maize (Zea mays L.). Journal of Plant Science and Phytopathology, 6(1), 033-039. https://doi.org/10.29328/journal.jpsp.1001071

Bashir, M. A., Naveed, M., Ahmad, Z., Gao, B., Mustafa, A., & Núñez-Delgado, A. (2020). Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. Journal of Environmental Management, 259, 110051. https://doi.org/10.1016/j.jenvman.2019.110051

Berdjour, A., Dugje, I., Rahman, N. A., Odoom, D. A., Kamara, A., & Ajala, S. (2020). Direct estimation of maize leaf area index as influenced by organic and inorganic fertilizer rates in Guinea Savanna. Journal of Agricultural Science, 12(6), 66-75. https://doi.org/10.5539/jas.v12n6p66

BPS. (2024). Data Ekspor Impor Nasional HS 2 Digit April 2024. Badan Pusat Statistik (BPS - Statistics Indonesia). https://www.bps.go.id/id/exim

Cheng, Q., Xu, H., Fei, S., Li, Z., & Chen, Z. (2022). Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments. Agriculture, 12(8), 1267. https://doi.org/10.3390/agriculture12081267

Chomczyńska, M., & Zdeb, M. (2019). The Effect of Z-ion Zeolite Substrate on Growth of Zea mays L. as Energy Crop Growing on Marginal Soil [journal article]. Journal of Ecological Engineering, 20(9), 253-260. https://doi.org/10.12911/22998993/112482

Dhaliwal, S. S., Sharma, S., Sharma, V., Shukla, A. K., Walia, S. S., Alhomrani, M., . . . Hossain, A. (2021). Long-Term Integrated Nutrient Management in the Maize–Wheat Cropping System in Alluvial Soils of North-Western India: Influence on Soil Organic Carbon, Microbial Activity and Nutrient Status. Agronomy, 11(11), 2258. https://doi.org/10.3390/agronomy11112258

Dietrich, C. C., Rahaman, M. A., Robles-Aguilar, A. A., Latif, S., Intani, K., Müller, J., & Jablonowski, N. D. (2020). Nutrient Loaded Biochar Doubled Biomass Production in Juvenile Maize Plants (Zea mays L.). Agronomy, 10(4), 567. https://doi.org/10.3390/agronomy10040567

Duygu, D. Y., Erkaya, İ. A., & Sızmaz, Ö. (2019). Doğal Tatlısu Ortamlarından Yığın Halinde Toplanan Cladophora glomerata (Linnaeus) Kützing ve Mougeotia sp . Türlerinin Biyokimyasal Komposizyonu. Aquatic Research, 2(1), 24-31. http://aquatres.scientificwebjournals.com/en/download/article-file/614302

Griffiths, M., Roy, S., Guo, H., Seethepalli, A., Huhman, D., Ge, Y., . . . York, L. M. (2020). A multiple ion-uptake phenotyping platform reveals shared mechanisms that affect nutrient uptake by maize roots. bioRxiv, 2020.2006.2015.153601. https://doi.org/10.1101/2020.06.15.153601

Gutiérrez-Gamboa, G., Garde-Cerdán, T., Gonzalo-Diago, A., Moreno-Simunovic, Y., & Martínez-Gil, A. M. (2017). Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. LWT, 75, 147-154. https://doi.org/10.1016/j.lwt.2016.08.039

Gutiérrez-Gamboa, G., Garde-Cerdán, T., Portu, J., Moreno-Simunovic, Y., & Martínez-Gil, A. M. (2017). Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content. Food Research International, 96, 46-53. https://doi.org/10.1016/j.foodres.2017.03.025

Irfan, M., Mudassir, M., Khan, M. J., Dawar, K. M., Muhammad, D., Mian, I. A., . . . Dewil, R. (2021). Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11(1), 18416. https://doi.org/10.1038/s41598-021-97525-8

Jamilah, Irawan, N., Thesiwati, A. S., & Ernita, M. (2020). Soybean seed [Glycine max L.] coated by fertile soil-applied sodium bicarbonate at alluvial soil. IOP Conference Series: Earth and Environmental Science, 497(1), 012039. https://doi.org/10.1088/1755-1315/497/1/012039

Jamilah, Rapialdi, & Ernita, M. (2021). Response of soybean (Glycine max L.) that was applied by various liquid organic fertilizer in climate change at acid soil. IOP Conference Series: Earth and Environmental Science, 883(1), 012041. https://doi.org/10.1088/1755-1315/883/1/012041

Kafle, A., khatri, D., Yadav, P. K., Regmi, R., & Koirala, B. (2022). Effect of Zinc and Boron on Growth and Yield of Maize (Zea Mays L.) in Pyuthan, Nepal. Plant Physiology And Soil Chemistry, 2(1). https://doi.org/10.26480/ppsc.02.2022.29.36

Karimuna, L., Halim, Kilowasid, L. M. H., Wijayanto, T., Anti, W. O., Suharjo, . . . Wahid. (2023). Growth performances of maize (Zea mays L.) intercropping with soybean (Glycine max (L.) Merrill.) in the legowo row system applied with bokashi plus fertilizer on marginal soils. IOP Conference Series: Earth and Environmental Science, 1208(1), 012040. https://doi.org/10.1088/1755-1315/1208/1/012040

Korzeniowska, K., Łęska, B., & Wieczorek, P. P. (2020). Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Research, 48, 101912. https://doi.org/10.1016/j.algal.2020.101912

Kosmowski, F., Chamberlin, J., Ayalew, H., Sida, T., Abay, K., & Craufurd, P. (2021). How accurate are yield estimates from crop cuts? Evidence from smallholder maize farms in Ethiopia. Food Policy, 102, 102122. https://doi.org/10.1016/j.foodpol.2021.102122

Koynarska, K., Goranovska, S., & Glogova, L. (2023). Statistical analysis of the height of hybrid plants Kn-517 and Kn-613 depending on mineral fertilization and crop density. Agricultural Sciences/Agrarni Nauki, 15(37). https://doi.org/10.22620/agrisci.2023.37.008

Li, S., Wu, X., Liang, G., Gao, L., Wang, B., Lu, J., . . . Degré, A. (2020). Is least limiting water range a useful indicator of the impact of tillage management on maize yield? Soil and Tillage Research, 199, 104602. https://doi.org/10.1016/j.still.2020.104602

Made, U., Adrianton, Sari, S. S., & Amirudin. (2022). Growth and yield of sweet corn (zea mays saccharata) at various npk fertilizer doses and liquid organic fertilizer concentrations. International Journal of Advanced Research, 10(11), 1026-1031. https://doi.org/10.21474/IJAR01/15760

Marchesini, G., Serva, L., Garbin, E., Mirisola, M., & Andrighetto, I. (2018). Near-infrared calibration transfer for undried whole maize plant between laboratory and on-site spectrometers. Italian Journal of Animal Science, 17(1), 66-72. https://doi.org/10.1080/1828051X.2017.1345660

Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33(1), 133-166. https://doi.org/10.1007/s10811-020-02211-3

Nciizah, A. D., Rapetsoa, M. C., Wakindiki, I. I. C., & Zerizghy, M. G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766

Nutautaitė, M., Vilienė, V., Racevičiūtė-Stupelienė, A., Bliznikas, S., Karosienė, J., & Koreivienė, J. (2021). Freshwater Cladophora glomerata Biomass as Promising Protein and Other Essential Nutrients Source for High Quality and More Sustainable Feed Production. Agriculture, 11(7), 582. https://doi.org/10.3390/agriculture11070582

Pandey, P., & Bhambri, M. (2017). Growth response of maize to different crop arrangements and nutrient managements under maize (Zea mays L.) and soybean (Glycine max L.) intercropping system. Plant Archives, 17(2), 967-972. https://plantarchives.org/17-2/967-972%20(3651).pdf

Prazukin, A., Shadrin, N., Balycheva, D., Firsov, Y., Lee, R., & Anufriieva, E. (2021). Cladophora spp. (Chlorophyta) modulate environment and create a habitat for microalgae in hypersaline waters. European Journal of Phycology, 56(3), 231-243. https://doi.org/10.1080/09670262.2020.1814423

Ravi, B. M., KLN Rao, Ashoka Rani Y, Martinluther M, & Prasad PRK. (2020). Physiological assessment of growth and yield of six maize hybrids in relation to growing degree days. International Journal of Chemical Studies, 8(4), 1546-1554. https://doi.org/10.22271/chemi.2020.v8.i4o.9831

Saboor, A., Ali, M. A., Hussain, S., El Enshasy, H. A., Hussain, S., Ahmed, N., . . . Datta, R. (2021). Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences, 28(11), 6339-6351. https://doi.org/10.1016/j.sjbs.2021.06.096

Sepat, S., Bana, R. S., & Kumar, D. (2023). Effect of tillage on productivity and soil quality on diversified maize (Zea mays) based cropping system. Indian Journal of Agronomy, 67(2), 129-136. https://doi.org/10.59797/ija.v67i2.108

Sheshu, M., Hasan, A., Thomas, T., David, A. A., Barthwal, A., & Khatana, R. N. S. (2022). Nutrient indexing of olsen’s phosphorous with relationship between inorganic forms of phosphorous in the alluvial soils. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 24(3), 502-505. http://www.envirobiotechjournals.com/AJMBES//AJ-10.pdf

Shojaei, S. H., Mostafavi, K., Bihamta, M., Omrani, A., Bojtor, C., Illes, A., . . . Mousavi, S. M. N. (2024). Selection of maize hybrids based on genotype × yield × trait (GYT) in different environments. Brazilian Journal of Biology, 84, e272093. https://doi.org/10.1590/1519-6984.272093

Tripathi, D., Alonso-Perez, M., & Tiwari, D. K. (2018). Rapid Diagnosis of Soil Nutrients Using Microscopic Techniques. Microscopy and Microanalysis, 24(S1), 680-681. https://doi.org/10.1017/s1431927618003896

Wang, Z., Chen, J., Raza, M. A., Zhang, J., Tan, X., Saeed, A., . . . Yang, W. (2022). Predicting maize leaf area index by partial least square combined with wavelet transform. Agronomy Journal, 114(5), 2860-2873. https://doi.org/10.1002/agj2.21167

Wildayana, E., Hasan, M. Y., Armanto, M. E., Zahri, I., Adriani, D., Sari, R. F., . . . Oktavia, R. (2018). The Highest Retail Price (HET) of Subsidized Fertilizer at the Farmer’s Level in South Sumatra Rice Farming, Indonesia [HET; Subsidized Fertilizer; Rice Farming; Level of Farmers]. 2018, 19(1), 12. https://doi.org/10.23917/jep.v19i1.5137

Xiang, Z., Gao, W., Chen, L., Lan, W., Zhu, J. Y., & Runge, T. (2016). A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose, 23(1), 493-503. https://doi.org/10.1007/s10570-015-0840-7

Yamaguchi, H., Yasutake, D., Hirota, T., & Nomura, K. (2023). Nondestructive Measurement Method of Leaf Area Index Using Near-infrared Radiation and Photosynthetically Active Radiation Transmitted through a Leafy Vegetable Canopy. HortScience, 58(1), 16-22. https://doi.org/10.21273/hortsci16761-22

Refbacks

  • There are currently no refbacks.