Temporal variation in the soil properties and rice yield of organic rice farming in the tropical monsoon region, Indonesia

Jauhari Syamsiyah, Dwi Priyo Ariyanto, Komariah Komariah, Aktavia Herawati, Pertiwi Kurnia Dwisetio, Safira Indrias Sari, Harjayanti Auliyaa Salsabila, Ganjar Herdiansyah, Sri Hartati, Mujiyo Mujiyo

Abstract

One of the organic farming goals is improving soil properties to support sustainable rice production. This study investigated the soil properties and rice yields under temporal variation of organic rice fields. Soil sampling was conducted in organic rice fields with three temporal variations, namely 0, 4, 7, and 10 years in a tropical monsoon region in Central Java, Indonesia. Variables observed included soil organic carbon, soil carbon stock, soil microbes population, dissolved organic carbon, soil liquid limit, soil sticky limit, soil plasticity limit, soil color changing limit, soil friability, soil porosity, soil total nitrogen, soil total phosphorus, soil available sulfur, exchangeable calcium, cation exchange capacity, total potassium, bulk density, base saturation, exchangeable sodium, exchangeable potassium, and rice yield.  This study confirms that soil organic carbon increased by 51.63% within 10 years (from 1.84% to 2.79%). Organic farming also improved all the physical, chemical, and biological soil properties, by the increase of soil organic carbon. However, soil organic carbon is mostly determined by soil cation exchange capacity, soil total phosphorus, and soil porosity. The mechanism of rice yield increase in organic rice farming is not affected by soil organic carbon directly but through the synergic increase in soil total nitrogen. The 1% increase of soil organic carbon increases 0.065% of soil total nitrogen hence rice yield increases by 1.66 tons ha-1. This study supports sustainable agriculture by providing evidence of improved soil properties under organic farming.

Keywords

Regenerative agriculture; Organic C; Rice Yield; Soil Physics; Soil Chemistry; Soil Fertility

Full Text:

PDF

References

Agegnehu, G., vanBeek, C., & Bird, M. I. (2014). Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. Journal of soil science and plant nutrition, 14, 532-545. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000300002&nrm=iso

Arunrat, N., Sereenonchai, S., Chaowiwat, W., Wang, C., & Hatano, R. (2022). Carbon, Nitrogen and Water Footprints of Organic Rice and Conventional Rice Production over 4 Years of Cultivation: A Case Study in the Lower North of Thailand. Agronomy, 12(2), 380. https://doi.org/10.3390/agronomy12020380

Bi, L., Yao, S., & Zhang, B. (2015). Impacts of long-term chemical and organic fertilization on soil puddlability in subtropical China. Soil and Tillage Research, 152, 94-103. https://doi.org/10.1016/j.still.2015.04.005

Blanco-Canqui, H., Ferguson, R. B., Shapiro, C. A., Drijber, R. A., & Walters, D. T. (2014). Does Inorganic Nitrogen Fertilization Improve Soil Aggregation? Insights from Two Long-Term Tillage Experiments. Journal of Environmental Quality, 43(3), 995-1003. https://doi.org/10.2134/jeq2013.10.0431

Bolan, N. S., Baskaran, S., & Thiagarajan, S. (1996). An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Communications in Soil Science and Plant Analysis, 27(13-14), 2723-2737. https://doi.org/10.1080/00103629609369735

Chhogyel, N., & Bajgai, Y. (2016). Modern rice varieties adoption to raise productivity: a case study of two districts in Bhutan. SAARC Journal of Agriculture, 13(2), 34-49. https://doi.org/10.3329/sja.v13i2.26567

Cong, W.-F., Hoffland, E., Li, L., Six, J., Sun, J.-H., Bao, X.-G., Zhang, F.-S., & Van Der Werf, W. (2015). Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21(4), 1715-1726. https://doi.org/10.1111/gcb.12738

FAO. (2019). Standard operating procedure for soil organic carbon. Walkley-Black method. Titration and colorimetric method. Food and Agriculture Organization (FAO) of United Nations. https://www.fao.org/3/ca7471en/ca7471en.pdf

Gaind, S., & Singh, Y. V. (2016). Short-Term Impact of Organic Fertilization and Seasonal Variations on Enzymes and Microbial Indices Under Rice–Wheat Rotation. CLEAN – Soil, Air, Water, 44(10), 1396-1404. https://doi.org/10.1002/clen.201500946

Hammad, H. M., Khaliq, A., Abbas, F., Farhad, W., Fahad, S., Aslam, M., Shah, G. M., Nasim, W., Mubeen, M., & Bakhat, H. F. (2020). Comparative Effects of Organic and Inorganic Fertilizers on Soil Organic Carbon and Wheat Productivity under Arid Region. Communications in Soil Science and Plant Analysis, 51(10), 1406-1422. https://doi.org/10.1080/00103624.2020.1763385

Hossain, M. B., & Sarker, R. R. (2016). Organic and Inorganic Amendments on Rice (Oryza sativa L.) and Soil in Salt Affected Areas of Bangladesh. Journal of Environmental Science and Natural Resources, 8(2), 109-113. https://doi.org/10.3329/jesnr.v8i2.26876

Iqbal, A., He, L., Ali, I., Yuan, P., Khan, A., Hua, Z., Wei, S., & Jiang, L. (2022). Partial Substation of Organic Fertilizer With Chemical Fertilizer Improves Soil Biochemical Attributes, Rice Yields, and Restores Bacterial Community Diversity in a Paddy Field [Original Research]. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.895230

Jayaraman, S., Dalal, R. C., Patra, A. K., & Chaudhari, S. K. (Eds.). (2021). Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security. Springer. https://doi.org/10.1007/978-981-16-0827-8.

Jones, D. L., & Willett, V. B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38(5), 991-999. https://doi.org/10.1016/j.soilbio.2005.08.012

Karasawa, T., Takebe, M., Sato, F., Komada, M., Nagaoka, K., Takenaka, M., Urashima, Y., Nishimura, S., Takahashi, S., & Kato, N. (2015). Trends of lettuce and carrot yields and soil enzyme activities during transition from conventional to organic farming in an Andosol. Soil Science and Plant Nutrition, 61(2), 295-311. https://doi.org/10.1080/00380768.2014.985577

Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2018). Fertilizers and Their Contaminants in Soils, Surface and Groundwater. In D. A. Dellasala & M. I. Goldstein (Eds.), Encyclopedia of the Anthropocene (pp. 225-240). Elsevier. https://doi.org/10.1016/B978-0-12-809665-9.09888-8

Lawenga, F. F., Hasanah, U., & Widjajanto, D. (2015). Pengaruh pemberian pupuk organik terhadap sifat fisika tanah dan hasiltanaman tomat (Lycopersicum esculentum mill.) di Desa Bulupountu Kecamatan Sigi Biromaru Kabupaten Sigi. Agrotekbis : E-Jurnal Ilmu Pertanian, 3(5), 564-570. http://jurnal.faperta.untad.ac.id/index.php/agrotekbis/article/view/1636

Lestariningsih, I. D., Widianto, & Hairiah, K. (2013). Assessing Soil Compaction with Two Different Methods of Soil Bulk Density Measurement in Oil Palm Plantation Soil. Procedia Environmental Sciences, 17, 172-178. https://doi.org/10.1016/j.proenv.2013.02.026

Loso, S., Sudradjat, H., Yahya, S., & Sutandi, A. (2020). The role of different types of biopory technology in repair of land properties and root growth in the palm oil plants area. Asian Journal of Microbiology, Biotechnology & Environmental Sciences Paper, 22(1), 2020. http://www.envirobiotechjournals.com/AJMBES/vol22i12020/AJ-21.pdf

Malau, R. S., & Utomo, W. H. (2017). Kajian sifat fisika tanah pada berbagai umur tanaman kayu putih ( Melaleuca cajuputi ) di lahan bekas tambang batubara PT Bukit Asam (PERSERO). Jurnal Tanah dan Sumberdaya Lahan, 4(2), 525-531. https://jtsl.ub.ac.id/index.php/jtsl/article/view/169

Munkholm, L. J. (2011). Soil friability: A review of the concept, assessment and effects of soil properties and management. Geoderma, 167-168, 236-246. https://doi.org/10.1016/j.geoderma.2011.08.005

Naher, U. A., Ahmed, M. N., Sarkar, M. I. U., Biswas, J. C., & Panhwar, Q. A. (2019). Chapter 8 - Fertilizer Management Strategies for Sustainable Rice Production. In S. Chandran, M. R. Unni, & S. Thomas (Eds.), Organic Farming (pp. 251-267). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813272-2.00009-4

Naresh, R., Kumar, A., Bhaskar, S., & Dhaliwal, S. (2017). Organic matter fractions and soil carbon sequestration after 15-years of integrated nutrient management and tillage systems in an annual double cropping system in northern India. https://www.phytojournal.com/archives/2017/vol6issue6/PartJ/6-5-342-570.pdf

Naveed, M., Moldrup, P., Vogel, H.-J., Lamandé, M., Wildenschild, D., Tuller, M., & de Jonge, L. W. (2014). Impact of long-term fertilization practice on soil structure evolution. Geoderma, 217-218, 181-189. https://doi.org/10.1016/j.geoderma.2013.12.001

Nkakini, S., & Fubara-Manuel, I. (2012). The effects of tillage methods on soil penetration resistance, porosity and okra yield. Research Journal of Applied Sciences, Engineering and Technology, 4(5), 387-392. https://www.researchgate.net/publication/262285130_The_Effects_of_Tillage_Methods_on_Soil_Penetration_Resistance_Porosity_and_Okra_Yield

Oliveira, F. É. R. d., Oliveira, J. d. M., & Xavier, F. A. d. S. (2016). Changes in Soil Organic Carbon Fractions in Response to Cover Crops in an Orange Orchard. Revista Brasileira de Ciência do Solo, 40. https://doi.org/10.1590/18069657rbcs20150105

Organic Institute, Yayasan Alifa, & Kombas.id. (2019). Statistik Pertanian Organik Indonesia 2019. Aliansi Organis Indonesia. https://aoi.ngo/spoi-2019/

Pérez-Méndez, N., Martínez-Eixarch, M., Llevat, R., Mateu, D., Marrero, H. J., Cid, N., & Catala-Forner, M. (2023). Enhanced diversity of aquatic macroinvertebrate predators and biological pest control but reduced crop establishment in organic rice farming. Agriculture, Ecosystems & Environment, 357, 108691. https://doi.org/10.1016/j.agee.2023.108691

Raad Al-Adhadh, A., Kadhem Sakban, H., & Tawfiq Naeem, Z. (2020). Effect of Method of Soil Drying On Atterberg Limits and Soil Classification. IOP Conference Series: Materials Science and Engineering, 739(1), 012044. https://doi.org/10.1088/1757-899X/739/1/012044

Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 15221. https://doi.org/10.1038/nplants.2015.221

Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (Eds.). (2012). Methods in Soil Biology. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-60966-4.

Schoonbeek, S., Azadi, H., Mahmoudi, H., Derudder, B., De Maeyer, P., & Witlox, F. (2013). Organic Agriculture and Undernourishment in Developing Countries: Main Potentials and Challenges. Critical Reviews in Food Science and Nutrition, 53(9), 917-928. https://doi.org/10.1080/10408398.2011.573886

Schreefel, L., Schulte, R. P. O., de Boer, I. J. M., Schrijver, A. P., & van Zanten, H. H. E. (2020). Regenerative agriculture – the soil is the base. Global Food Security, 26, 100404. https://doi.org/10.1016/j.gfs.2020.100404

Seufert, V. (2012). Organic Agriculture as an Opportunity for Sustainable Agricultural Development. Research to Practice Policy Briefs, 13, 1-16. https://www.mcgill.ca/isid/files/isid/seufert.pb13.pdf

Singh, D. K., Akhtar, Z., Gupta, S., Srivastava, A., & Chakraborty, M. (2017). Production strategies of organic basmati rice in Tarai region of Uttarakhand, India. Organic Agriculture, 7(1), 21-30. https://doi.org/10.1007/s13165-015-0143-1

Susila, K. D. (2013). Studi Keharaan Tanaman dan Evaluasi Kesuburan Tanah di Lahan Pertanaman Jeruk Desa Cenggiling, Kecamatan Kuta Selatan. Agrotrop : Journal on Agriculture Science, 3(2). https://ojs.unud.ac.id/index.php/agrotrop/article/view/15255

Tomašic, M., Zgorelec, Ž., Jurišic, A., & Kisic, I. (2013). Cation exchange capacity of dominant soil types in the Republic of Croatia. Journal of Central European Agriculture. https://doi.org/10.5513/JCEA01/14.3.1286

Victoria, R., Banwart, S., Black, H., Ingram, J., Joosten, H., Milne, E., & Noellemeyer, E. (2012). The Benefits of Soil Carbon Managing soils for multpiple economic, societal and environmental benefits. In UNEP Year Book. https://doi.org/10.13140/2.1.1436.5125

Wang, H., Boutton, T. W., Xu, W., Hu, G., Jiang, P., & Bai, E. (2015). Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Scientific Reports, 5(1), 10102. https://doi.org/10.1038/srep10102

Zong, Y., & Lu, S. (2020). Does long-term inorganic and organic fertilization affect soil structural and mechanical physical quality of paddy soil? Archives of Agronomy and Soil Science, 66(5), 625-637. https://doi.org/10.1080/03650340.2019.1630823

Refbacks

  • There are currently no refbacks.