Effect of Iron (Fe) heavy metal content at different pH on the germination of seven soybean varieties in Indonesia

Paul Benyamin Timotiwu, Agustiansyah Agustiansyah, Dini Muslimah

Abstract

Greater use of acid soil has expanded the area under cultivation for soybeans; however, acid soil is associated with heavy mineral toxicity, including Iron (Fe). This investigation looked at how well soybean seeds germinated in media containing heavy metal Fe and how the pH of the media affected the viability of soybean seeds. This research was conducted at the Seed and Plant Breeding Laboratory at the University of Lampung, Indonesia. The experimental design was a randomized block design. The first factor was seven soybean local varieties – Grobogan, Anjasmoro, Derap 1, Detap 1, Dena 1, Deja 1, and Dega 1 – and the second factor was heavy metal Fe solution pH of 6–7 and 4.5 and without heavy metal Fe (control). Seed viability in heavy metal Fe medium was assessed using radicle emergence, germination capacity or percentage, germination speed, number of normal seedlings, normal seedling hypocotyl length, main root length of regular seedlings, and normal shoot dry weight. This research found that heavy metal Fe affected soybeans’ seeds’ viability in pH 6–7 and 4.5. The observed data showed that all seeds’ viability variables in media with heavy metal Fe, both in pH 6–7 and in pH 4.5, differ from the control media. The seed viability in media heavy metal Fe pH 6–7 was not significantly different from the control media, but in pH 4.5, the difference is significant. Soybean varieties’ characteristics also influence how heavy metal Fe in different pH affects seed viability. Overall, Anjasmoro, Deja, Grobogan, and Dega were the types that consistently demonstrated resistance or adaptation to heavy metal Fe existence, while Dena, Derap, and Detap are susceptible to heavy metal Fe existence. Seed viability in Iron medium is not always related to seed physical performance; therefore, before planting soybean in acid soil, it is recommended to conduct a seed viability test.

Keywords

Acid Soils; Germination; Heavy Metal; Soybean; Seeds Viability

Full Text:

PDF

References

Aisah, A. R., Herawati, N., & Hidayah, B. N. (2020). Growth and yield of five Indonesian new superior varieties of soybean in dry climate rainfed rice fields. IOP Conference Series: Earth and Environmental Science, 457(1), 012054. https://doi.org/10.1088/1755-1315/457/1/012054

Ali, A. S., & Elozeiri, A. A. (2017). Metabolic Processes During Seed Germination. In C. J.-L. Jose (Ed.), Seed Biology (pp. Ch. 8). IntechOpen. https://doi.org/10.5772/intechopen.70653

Arifin, H. A., Arifin, A. G., & Mejaya, M. J. (2023). Relationship of Phytochemical and Seed Characteristics of Indonesian Soybean Varieties. Agricultural Science Digest-A Research Journal, 43(2), 220-225. https://doi.org/10.18805/ag.DF-512

Asadi-Kavan, Z., Khavari-Nejad, R. A., Iranbakhsh, A., & Najafi, F. (2020). Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.). Journal of Plant Interactions, 15(1), 166-179. https://doi.org/10.1080/17429145.2020.1774671

Aung, M. S., & Masuda, H. (2020). How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms [Mini Review]. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01102

Bakari, R., Mungai, N., Thuita, M., & Masso, C. (2020). Impact of soil acidity and liming on soybean (Glycine max) nodulation and nitrogen fixation in Kenyan soils. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 70(8), 667-678. https://doi.org/10.1080/09064710.2020.1833976

Baruah, N., Mondal, S. C., Farooq, M., & Gogoi, N. (2019). Influence of Heavy Metals on Seed Germination and Seedling Growth of Wheat, Pea, and Tomato. Water, Air, & Soil Pollution, 230(12), 273. https://doi.org/10.1007/s11270-019-4329-0

Bezini, E., Abdelguerfi, A., Nedjimi, B., Touati, M., Adli, B., & Yabrir, B. (2019). Effect of some heavy metals on seed germination of Medicago arborea L.(Fabaceae). Agriculturae Conspectus Scientificus, 84(4), 357-364. https://acs.agr.hr/acs/index.php/acs/article/view/1595

Bian, M., Zhou, M., Sun, D., & Li, C. (2013). Molecular approaches unravel the mechanism of acid soil tolerance in plants. The Crop Journal, 1(2), 91-104. https://doi.org/10.1016/j.cj.2013.08.002

BPS. (2020). Statistik Indonesia. Badan Pusat Statistik. https://bps.go.id

Chai, M., Li, R., Shen, X., Yu, L., & Han, J. (2022). Multiple heavy metals affect root response, iron plaque formation, and metal bioaccumulation of Kandelia obovata. Scientific Reports, 12(1), 14389. https://doi.org/10.1038/s41598-022-14867-7

Cruz, D. R., Leandro, L. F. S., & Munkvold, G. P. (2019). Effects of Temperature and pH on Fusarium oxysporum and Soybean Seedling Disease. Plant Disease, 103(12), 3234-3243. https://doi.org/10.1094/pdis-11-18-1952-re

Das, S., Tyagi, W., Rai, M., & Yumnam, J. S. (2017). Understanding Fe2+ toxicity and P deficiency tolerance in rice for enhancing productivity under acidic soils. Biotechnology and Genetic Engineering Reviews, 33(1), 97-117. https://doi.org/10.1080/02648725.2017.1370888

de Mello Gabriel, G. V., Pitombo, L. M., Rosa, L. M. T., Navarrete, A. A., Botero, W. G., do Carmo, J. B., & de Oliveira, L. C. (2021). The environmental importance of iron speciation in soils: evaluation of classic methodologies. Environmental Monitoring and Assessment, 193(2), 63. https://doi.org/10.1007/s10661-021-08874-w

Dey, S., Kar, S., Regon, P., & Panda, S. K. (2019). Physiology and Biochemistry of Fe Excess in Acidic Asian Soils on Crop Plants. 2019, 16(1), 15. https://doi.org/10.20961/stjssa.v16i1.30456

El Rasafi, T., Nouri, M., Bouda, S., & Haddioui, A. (2016). The Effect of Cd, Zn and Fe on Seed Germination and Early Seedling Growth of Wheat and Bean. Ekológia (Bratislava), 35(3), 213-223. https://doi.org/10.1515/eko-2016-0017

Endrizal, & Jumakir. (2015). Keragaan Dan Produktivitas Kedelai Dengan Pendekatan PTT Di Lahan Sawah Irigasi pada Pola Tanam Padi-Padi-Kedelai Di Provinsi Jambi. Prosiding Seminar Nasional Pengembangan Teknologi Pertanian, https://jurnal.polinela.ac.id/PROSIDING/article/view/548

Fageria, N. K., & Nascente, A. S. (2014). Chapter Six - Management of Soil Acidity of South American Soils for Sustainable Crop Production. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 128, pp. 221-275). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802139-2.00006-8

Finch-Savage, W. E., & Bassel, G. W. (2015). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567-591. https://doi.org/10.1093/jxb/erv490

Fischer, G., Nachtergaele, F., Van Velthuizen, H., Chiozza, F., Franceschini, G., Henry, M., Muchoney, D., & Tramberend, S. (2021). Global agro-ecological zones v4–model documentation. Food & Agriculture Org. https://doi.org/10.4060/cb4744en

Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V., & Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16(3), 1807-1828. https://doi.org/10.1007/s13762-019-02215-8

Gülser, F., Yavuz, H. İ., Gökkaya, T. H., & Sedef, M. (2019). Effects of iron sources and doses on plant growth criteria in soybean seedlings. Eurasian Journal of Soil Science, 8(4), 298-303. https://doi.org/10.18393/ejss.582231

Haitami, A., Indrawanis, E., Ezward, C., & Wahyudi, W. (2021). Tampilan agronomi beberapa varietas unggul kedelai (Glycine max L.) di tanah ultisol kabupaten Kuantan Singingi. Menara Ilmu, 15(1). https://doi.org/10.31869/mi.v15i1.2453

Haque, A. F. M. M., Rahman, M. A., Das, U., Rahman, M. M., Elseehy, M. M., El-Shehawi, A. M., Parvez, M. S., & Kabir, A. H. (2022). Changes in physiological responses and MTP (metal tolerance protein) transcripts in soybean (Glycine max) exposed to differential iron availability. Plant Physiology and Biochemistry, 179, 1-9. https://doi.org/10.1016/j.plaphy.2022.03.007

Jiang, X., Xin, X., Li, S., Zhou, J., Zhu, T., Müller, C., Cai, Z., & Wright, A. L. (2015). Effects of Fe oxide on N transformations in subtropical acid soils. Scientific Reports, 5(1), 8615. https://doi.org/10.1038/srep08615

Karges, K., Bellingrath-Kimura, S. D., Watson, C. A., Stoddard, F. L., Halwani, M., & Reckling, M. (2022). Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe. European Journal of Agronomy, 133, 126415. https://doi.org/10.1016/j.eja.2021.126415

Kuswantoro, H. (2014). Relative growth rate of six soybean genotypes under iron toxicity condition. International Journal of Biology, 6(3), 11-17. https://doi.org/10.5539/ijb.v6n3p11

Lapaz, A. d. M., Yoshida, C. H. P., Gorni, P. H., Freitas-Silva, L. d., Araújo, T. d. O., & Ribeiro, C. (2022). Iron toxicity: effects on the plants and detoxification strategies. Acta Botanica Brasilica, 36. https://doi.org/10.1590/0102-33062021abb0131

Li, G., Kronzucker, H. J., & Shi, W. (2016). Root developmental adaptation to Fe toxicity: Mechanisms and management. Plant Signaling & Behavior, 11(1), e1117722. https://doi.org/10.1080/15592324.2015.1117722

Louf, J.-F., Zheng, Y., Kumar, A., Bohr, T., Gundlach, C., Harholt, J., Poulsen, H. F., & Jensen, K. H. (2018). Imbibition in plant seeds. Physical Review E, 98(4), 042403. https://doi.org/10.1103/PhysRevE.98.042403

Mari, S., Bailly, C., & Thomine, S. (2020). Handing off iron to the next generation: how does it get into seeds and what for? Biochemical Journal, 477(1), 259-274. https://doi.org/10.1042/bcj20190188

Milivojević, M., Ripka, Z., & Petrović, T. (2018). ISTA rules changes in seed germination testing at the beginning of the 21st century. Journal on processing and energy in agriculture, 22(1), 40-45. https://doi.org/10.5937/JPEA1801040M

Mittal, N., Vaid, P., & Avneet, K. (2015). Effect on amylase activity and growth parameters due to metal toxicity of iron, copper and zinc. Indian Journal of Applied Science, 5(4), 662-664. https://www.worldwidejournals.com/indian-journal-of-applied-research-(IJAR)/fileview/April_2015_1429517051__203.pdf

Mulyani, A., & Sarwani, M. (2013). Karakteristik dan potensi lahan sub optimal untuk pengembangan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 7(1), 47-55. https://repository.pertanian.go.id/server/api/core/bitstreams/03e30be9-3460-4ff5-9fb9-9545f4bc8789/content

Nazarenko, L., Schmidt, G. A., Miller, R. L., Tausnev, N., Kelley, M., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S., Bleck, R., Canuto, V., Cheng, Y., Clune, T. L., Del Genio, A. D., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Menon, S., Oinas, V., Perlwitz, J., Puma, M. J., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., & Zhang, J. (2015). Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 7(1), 244-267. https://doi.org/10.1002/2014MS000403

Nikolic, M., & Pavlovic, J. (2018). Chapter 3 - Plant Responses to Iron Deficiency and Toxicity and Iron Use Efficiency in Plants. In M. A. Hossain, T. Kamiya, D. J. Burritt, L.-S. Phan Tran, & T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency (pp. 55-69). Academic Press. https://doi.org/10.1016/B978-0-12-812104-7.00004-6

Pagano, M. C., & Miransari, M. (2016). 1 - The importance of soybean production worldwide. In M. Miransari (Ed.), Abiotic and Biotic Stresses in Soybean Production (pp. 1-26). Academic Press. https://doi.org/10.1016/B978-0-12-801536-0.00001-3

Pennisi, S. V., & Thomas, P. A. (2015). Essential pH management in greenhouse crops. University of Georgia Extension. https://secure.caes.uga.edu/extension/publications/files/pdf/B%201256_8.PDF

Rachmat, M., & Erwidodo. (1996). Pendugaan Permintaan Impor Komoditi Kedele dan Gandum Indonesia. Jurnal Agro Ekonomi, 13(1), 43-60. https://repository.pertanian.go.id/server/api/core/bitstreams/d9f17f87-d83e-4982-b4d0-7adc246a392d/content

Reed, R. C., Bradford, K. J., & Khanday, I. (2022). Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity, 128(6), 450-459. https://doi.org/10.1038/s41437-022-00497-2

Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of soil science and plant nutrition, 15, 397-409. https://doi.org/10.4067/S0718-95162015005000036

Ritz, C., Pipper, C. B., & Streibig, J. C. (2013). Analysis of germination data from agricultural experiments. European Journal of Agronomy, 45, 1-6. https://doi.org/10.1016/j.eja.2012.10.003

Rizvi, A., Zaidi, A., Ameen, F., Ahmed, B., AlKahtani, M. D. F., & Khan, M. S. (2020). Heavy metal induced stress on wheat: phytotoxicity and microbiological management [10.1039/D0RA05610C]. RSC Advances, 10(63), 38379-38403. https://doi.org/10.1039/D0RA05610C

Rodrigues Filho, J., Borges Corte, V., Tereza de Almeida Leite Perin, I., Reis dos Santos, C., & Waichert da Silva, R. (2020). Efeitos da toxicidade por ferro na germinação e crescimento inicial de Carica papaya L. Scientia Plena, 16(10). https://doi.org/10.14808/sci.plena.2020.101201

Sethy, S. K., & Ghosh, S. (2013). Effect of heavy metals on germination of seeds. J Nat Sci Biol Med, 4(2), 272-275. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783763/

Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36-58. https://doi.org/10.1016/j.jhazmat.2016.11.063

Sintorini, M. M., Widyatmoko, H., Sinaga, E., & Aliyah, N. (2021). Effect of pH on metal mobility in the soil. IOP Conference Series: Earth and Environmental Science, 737(1), 012071. https://doi.org/10.1088/1755-1315/737/1/012071

Sultana, R., Tanvir, R. U., Hussain, K. A., Chamon, A. S., & Mondol, M. N. (2022). Heavy Metals in Commonly Consumed Root and Leafy Vegetables in Dhaka City, Bangladesh, and Assessment of Associated Public Health Risks. Environmental Systems Research, 11(1), 15. https://doi.org/10.1186/s40068-022-00261-9

Vácha, R. (2021). Heavy Metal Pollution and Its Effects on Agriculture. Agronomy, 11(9), 1719. https://doi.org/10.3390/agronomy11091719

William, E., & Saleh, M. (2016). Tampilan kedelai varietas Grobogan, lawit, Dan Menyapa di Kebun Percobaan Banjarbaru Prosiding Seminar Nasional Lahan Basah, Universitas Lambung Mangkurat. http://lppm.ulm.ac.id/id/wp-content/uploads/2017/10/SNLB-1602-913-915-William-Saleh.pdf

Xu, D., Shen, Z., Dou, C., Dou, Z., Li, Y., Gao, Y., & Sun, Q. (2022). Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns. Scientific Reports, 12(1), 9211. https://doi.org/10.1038/s41598-022-13140-1

Zhen, X., Gao, F., Li, X., Liu, Z., Zhao, J., Li, Y., Wang, Y., Li, Y., Wang, Z., Lai, H., Pan, X., & Yang, D. (2021). Responses of hypocotyl growth and seedling emergence with respect to soil sowing depth stress in peanut (Arachis hypogaea L.). Archives of Agronomy and Soil Science, 67(4), 519-535. https://doi.org/10.1080/03650340.2020.1737856

Zielińska-Dawidziak, M., Hertig, I., Staniek, H., Piasecka-Kwiatkowska, D., & Nowak, K. W. (2014). Effect of Iron Status in Rats on the Absorption of Metal Ions from Plant Ferritin. Plant Foods for Human Nutrition, 69(2), 101-107. https://doi.org/10.1007/s11130-014-0413-1

Refbacks

  • There are currently no refbacks.