Soil hydraulic properties and field-scale hydrology as affected by land-management options
Abstract
Keywords
Full Text:
PDFReferences
Ali, M., Amin, M. G. M., & Islam, A. (2005). Reference crop evapo-transpiration (ET0) over Bangladesh and its implication in crop planning. Journal of the Bangladesh Agricultural University, 3(452-2018-3816), 139-147. https://doi.org/10.22004/ag.econ.276419.
Amin, M., Khan, M. J., Jan, M. T., Rehman, M. U., Tariq, J. A., Hanif, M., & Shah, Z. (2014). Effect of different tillage practices on soil physical properties under wheat in semi-arid environment. Soil and Environment, 33(1), 33-37. http://www.se.org.pk/File-Download.aspx?archivedpaperid=712.
Amin, M. G. M., Akter, A., Jahangir, M. M. R., & Ahmed, T. (2021). Leaching and runoff potential of nutrient and water losses in rice field as affected by alternate wetting and drying irrigation. Journal of Environmental Management, 297, 113402. https://doi.org/10.1016/j.jenvman.2021.113402.
Amin, M. G. M., Pedersen, C. Ø., Forslund, A., Veith, T. L., & Laegdsmand, M. (2016). Influence of soil structure on contaminant leaching from injected slurry. Journal of Environmental Management, 184, 289-296. https://doi.org/10.1016/j.jenvman.2016.10.002.
Amin, M. G. M., Šimůnek, J., & Lægdsmand, M. (2014). Simulation of the redistribution and fate of contaminants from soil-injected animal slurry. Agricultural Water Management, 131, 17-29. https://doi.org/10.1016/j.agwat.2013.09.002.
Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L., & Ritz, K. (2019). Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Scientific Reports, 9(1), 7473. https://doi.org/10.1038/s41598-019-43937-6.
Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., & Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). CATENA, 160, 376-384. https://doi.org/10.1016/j.catena.2017.10.009.
Cabangon, R. J., Tuong, T. P., Castillo, E. G., Bao, L. X., Lu, G., Wang, G., Cui, Y., Bouman, B. A. M., Li, Y., Chen, C., & Wang, J. (2004). Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy and Water Environment, 2(4), 195-206. https://doi.org/10.1007/s10333-004-0062-3.
Carrijo, D. R., Lundy, M. E., & Linquist, B. A. (2017). Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203, 173-180. https://doi.org/10.1016/j.fcr.2016.12.002.
Chauhan, B. S., Jabran, K., & Mahajan, G. (Eds.). (2017). Rice Production Worldwide. Springer International Publishing. https://doi.org/10.1007/978-3-319-47516-5.
Chen, A., & Arai, Y. (2020). Chapter Three - Current uncertainties in assessing the colloidal phosphorus loss from soil. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 163, pp. 117-151). Academic Press. https://doi.org/10.1016/bs.agron.2020.05.002
Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research, 136, 61-69. https://doi.org/10.1016/j.still.2013.09.004.
Chen, S. K., & Liu, C. W. (2002). Analysis of water movement in paddy rice fields (I) experimental studies. Journal of Hydrology, 260(1), 206-215. https://doi.org/10.1016/S0022-1694(01)00615-1.
Datta, A., Ullah, H., & Ferdous, Z. (2017). Water Management in Rice. In B. S. Chauhan, K. Jabran, & G. Mahajan (Eds.), Rice Production Worldwide (pp. 255-277). Springer International Publishing. https://doi.org/10.1007/978-3-319-47516-5_11
Fang, J., Zhang, K., Sun, P., Lin, D., Shen, B., & Luo, Y. (2016). Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid. Science of The Total Environment, 571, 471-478. https://doi.org/10.1016/j.scitotenv.2016.07.013.
FAO. (2020). World food and agriculture - statistical yearbook 2020. World Food and Agriculture-Statistical Yearbook. https://doi.org/10.4060/cb1329en.
Fu, T., Chen, H., Zhang, W., Nie, Y., Gao, P., & Wang, K. (2015a). Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest China. Environmental Earth Sciences, 74(3), 2381-2391. https://doi.org/10.1007/s12665-015-4238-5.
Fu, T., Chen, H., Zhang, W., Nie, Y., & Wang, K. (2015b). Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China. Environmental Monitoring and Assessment, 187(3), 92. https://doi.org/10.1007/s10661-015-4320-1.
Fu, T., Gao, H., Liang, H., & Liu, J. (2021). Controlling factors of soil saturated hydraulic conductivity in Taihang Mountain Region, northern China. Geoderma Regional, 26, e00417. https://doi.org/10.1016/j.geodrs.2021.e00417.
Gao, W., Whalley, W. R., Tian, Z., Liu, J., & Ren, T. (2016). A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field. Soil and Tillage Research, 155, 190-198. https://doi.org/10.1016/j.still.2015.08.004.
Havaee, S., Ayoubi, S., Mosaddeghi, M. R., & Keller, T. (2014). Impacts of land use on soil organic matter and degree of compactness in calcareous soils of central Iran. Soil Use and Management, 30(1), 2-9. https://doi.org/10.1111/sum.12092.
He, Y., Lehndorff, E., Amelung, W., Wassmann, R., Alberto, M. C., von Unold, G., & Siemens, J. (2017). Drainage and leaching losses of nitrogen and dissolved organic carbon after introducing maize into a continuous paddy-rice crop rotation. Agriculture, Ecosystems & Environment, 249, 91-100. https://doi.org/10.1016/j.agee.2017.08.021.
Huang, H. C., Liu, C. W., Chen, S. K., & Chen, J. S. (2003). Analysis of percolation and seepage through paddy bunds. Journal of Hydrology, 284(1), 13-25. https://doi.org/10.1016/S0022-1694(03)00228-2.
Islam, M. D. D., Price, A. H., & Hallett, P. D. (2021). Contrasting ability of deep and shallow rooting rice genotypes to grow through plough pans containing simulated biopores and cracks. Plant and Soil, 467(1), 515-530. https://doi.org/10.1007/s11104-021-05131-4.
Islam, M. M., Meerschman, E., Saey, T., De Smedt, P., Van De Vijver, E., Delefortrie, S., & Van Meirvenne, M. (2014). Characterizing Compaction Variability with an Electromagnetic Induction Sensor in a Puddled Paddy Rice Field. Soil Science Society of America Journal, 78(2), 579-588. https://doi.org/10.2136/sssaj2013.07.0289.
Talukolaee, M. J., Darzi Naftchali, A., Parvariji, L. Z., & Ahmadi, M. Z. (2018). Investigating long-term effects of subsurface drainage on soil structure in paddy fields. Soil and Tillage Research, 177, 155-160. https://doi.org/10.1016/j.still.2017.12.012.
Janssen, M., & Lennartz, B. (2009). Water losses through paddy bunds: Methods, experimental data, and simulation studies. Journal of Hydrology, 369(1), 142-153. https://doi.org/10.1016/j.jhydrol.2009.02.038.
Jiang, B., Shen, J., Sun, M., Hu, Y., Jiang, W., Wang, J., Li, Y., & Wu, J. (2021). Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere, 31(1), 103-115. https://doi.org/10.1016/S1002-0160(20)60053-4.
Kakaire, J., Makokha, G. L., Mwanjalolo, M., Mensah, A. K., & Menya, E. (2015). Effects of Mulching on Soil Hydro-Physical Properties in Kibaale Sub-catchment, South Central Uganda. Applied Ecology and Environmental Sciences, 3(5), 127-135. https://doi.org/10.12691/aees-3-5-1.
Kar, S. K., Patra, S., Singh, R. M., Sankar, M., Kumar, S., Singh, D., Madhu, M.,& Singla, S. (2023a). Impact of land use reformation on soil hydraulic properties and recovery potential of conservation tillage in India's North-West Himalayan region. Ecohydrology & Hydrobiology, 23(2), 290-303. https://doi.org/10.1016/j.ecohyd.2022.12.008.
Kar, S. K., Singh, R. M., Patra, S., Sankar, M., Kumar, S., & Singh, A. (2023b). Implication of land use shifting on land degradation and restoration potential of conservation agriculture in India's North-West Himalayan region. Geoderma Regional, 32, e00616. https://doi.org/10.1016/j.geodrs.2023.e00616.
Kirkham, J. M., Smith, C. J., Doyle, R. B., & Brown, P. H. (2019). Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol). PeerJ, 6, e6002. https://doi.org/10.7717/peerj.6002.
Leung, A. K., Garg, A., & Ng, C. W. W. (2015). Effects of plant roots on soil-water retention and induced suction in vegetated soil. Engineering Geology, 193, 183-197. https://doi.org/10.1016/j.enggeo.2015.04.017.
Li, Y., Šimůnek, J., Jing, L., Zhang, Z., & Ni, L. (2014). Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D. Agricultural Water Management, 142, 38-46. https://doi.org/10.1016/j.agwat.2014.04.021.
Liu, Q., Kan, Z., He, C., & Zhang, H. (2020). Effects of Strategic Tillage on Soil Physicochemical Properties and Grain Yield in the North China Plain. Agronomy, 10(8), 1167. https://doi.org/10.3390/agronomy10081167.
Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., & Tan, Z. (2020). Root-induced changes of soil hydraulic properties – A review. Journal of Hydrology, 589, 125203. https://doi.org/10.1016/j.jhydrol.2020.125203.
Mairghany, M., Yahya, A., Adam, N. M., Su, A. S. M., Aimrun, W., & Elsoragaby, S. (2019). Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia. Soil and Tillage Research, 194, 104318. https://doi.org/10.1016/j.still.2019.104318.
Marcacci, K. M., Warren, J. M., Perfect, E., & Labbé, J. L. (2022). Influence of living grass Roots and endophytic fungal hyphae on soil hydraulic properties. Rhizosphere, 22, 100510. https://doi.org/10.1016/j.rhisph.2022.100510.
McCarty, L. B., Hubbard, L. R., & Quisenberry, V. L. (2016). Applied soil physical properties, drainage, and irrigation strategies. Springer. https://doi.org/10.1007/978-3-319-24226-2
Mehler, K., Schöning, I., & Berli, M. (2014). The Importance of Rock Fragment Density for the Calculation of Soil Bulk Density and Soil Organic Carbon Stocks. Soil Science Society of America Journal, 78(4), 1186-1191. https://doi.org/10.2136/sssaj2013.11.0480.
Mo’allim, A. A., Kamal, M. R., Muhammed, H. H., Yahaya, N. K. E. M., Zawawe, M. A. b. M., Man, H. B. C., & Wayayok, A. (2018). An Assessment of the Vertical Movement of Water in a Flooded Paddy Rice Field Experiment Using Hydrus-1D. Water, 10(6), 783. https://doi.org/10.3390/w10060783.
Mondal, S., Kumar, S., Haris, A. A., Dwivedi, S. K., Bhatt, B. P., & Mishra, J. S. (2016). Effect of different rice establishment methods on soil physical properties in drought-prone, rainfed lowlands of Bihar, India. Soil Research, 54(8), 997-1006. https://doi.org/10.1071/SR15346.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153.
Nanko, K., Giambelluca, T. W., Sutherland, R. A., Mudd, R. G., Nullet, M. A., & Ziegler, A. D. (2015). Erosion Potential under Miconia calvescens Stands on the Island of Hawai‘i. Land Degradation & Development, 26(3), 218-226. https://doi.org/10.1002/ldr.2200.
Nawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291-309. https://doi.org/10.1007/s13593-011-0071-8.
Neumann, R. B., Polizzotto, M. L., Badruzzaman, A. B. M., Ali, M. A., Zhang, Z., & Harvey, C. F. (2009). Hydrology of a groundwater-irrigated rice field in Bangladesh: Seasonal and daily mechanisms of infiltration. Water Resources Research, 45(9). https://doi.org/10.1029/2008WR007542.
Osunbitan, J. A., Oyedele, D. J., & Adekalu, K. O. (2005). Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research, 82(1), 57-64. https://doi.org/10.1016/j.still.2004.05.007.
Pang, L., Lafogler, M., Knorr, B., McGill, E., Saunders, D., Baumann, T., Abraham, P., & Close, M. (2016). Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media. Science of The Total Environment, 550, 60-68. https://doi.org/10.1016/j.scitotenv.2016.01.075.
Patil, M. D., & Das, B. S. (2013). Assessing the effect of puddling on preferential flow processes through under bund area of lowland rice field. Soil and Tillage Research, 134, 61-71. https://doi.org/10.1016/j.still.2013.07.008.
Patra, S., Julich, S., Feger, K. H., Jat, M. L., Jat, H., Sharma, P. C., & Schwärzel, K. (2019). Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. Soil and Tillage Research, 192, 151-163. https://doi.org/10.1016/j.still.2019.05.003.
Peng, S. Z., Yang, S. H., Xu, J. Z., Luo, Y. F., & Hou, H. J. (2011). Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy and Water Environment, 9(3), 333-342. https://doi.org/10.1007/s10333-010-0246-y.
Pereira, L. S., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108, 39-51. https://doi.org/10.1016/j.agwat.2011.08.022.
Phogat, V., Skewes, M. A., McCarthy, M. G., Cox, J. W., Šimůnek, J., & Petrie, P. R. (2017). Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip. Agricultural Water Management, 180, 22-34. https://doi.org/10.1016/j.agwat.2016.10.016.
Rajamanthri, K., Jotisankasa, A., & Aramrak, S. (2021). Effects of Chrysopogon zizanioides root biomass and plant age on hydro-mechanical behavior of root-permeated soils. International Journal of Geosynthetics and Ground Engineering, 7(2), 36. https://doi.org/10.1007/s40891-021-00271-0.
Scalenghe, R., Edwards, A. C., Barberis, E., & Ajmone-Marsan, F. (2014). Release of phosphorus under reducing and simulated open drainage conditions from overfertilised soils. Chemosphere, 95, 289-294. https://doi.org/10.1016/j.chemosphere.2013.09.016.
Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M. A., Tung, S. A., Hafeez, A., & Souliyanonh, B. (2017). Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24(11), 10056-10067. https://doi.org/10.1007/s11356-017-8421-y.
Shao, W., Ni, J., Leung, A. K., Su, Y., & Ng, C. W. W. (2017). Analysis of plant root–induced preferential flow and pore-water pressure variation by a dual-permeability model. Canadian Geotechnical Journal, 54(11), 1537-1552. https://doi.org/10.1139/cgj-2016-0629.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., & van Genuchten, M. T. (2009). The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media (Vol. 1). Department of Environmental Sciences, University of California, Riverside. https://www.pc-progress.com/Downloads/Pgm_hydrus1D/HYDRUS1D-4.08.pdf
Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2008). Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone Journal, 7(2), 587-600. https://doi.org/10.2136/vzj2007.0077.
Singh, K., Mishra, A. K., Singh, B., Singh, R. P., & Patra, D. D. (2016). Tillage Effects on Crop Yield and Physicochemical Properties of Sodic Soils. Land Degradation & Development, 27(2), 223-230. https://doi.org/10.1002/ldr.2266.
Tang, X. Y., Katou, H., & Suzuki, K. (2020). Liming effects on dissolved and colloid-associated transport of cadmium in soil under intermittent simulated rainfall. Journal of Hazardous Materials, 400, 123244. https://doi.org/10.1016/j.jhazmat.2020.123244.
Toor, G. S., & Sims, J. T. (2015). Managing Phosphorus Leaching in Mid-Atlantic Soils: Importance of Legacy Sources. Vadose Zone Journal, 14(12), vzj2015.2008.0108. https://doi.org/10.2136/vzj2015.08.0108.
de Moraes, M. T., Debiasi, H., Carlesso, R., Franchini, J. C., da Silva, V. R., & da Luz, F. B. (2016). Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil and Tillage Research, 155, 351-362. https://doi.org/10.1016/j.still.2015.07.015.
van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
van Genuchten, M. T., Leij, F., & Yates, S. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryId=130162.
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Franssen, H. J. H., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., & Young, I. M. (2016). Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 15(5), vzj2015.2009.0131. https://doi.org/10.2136/vzj2015.09.0131.
Wang, G., Fang, Q., Wu, B., Yang, H., & Xu, Z. (2015). Relationship between soil erodibility and modeled infiltration rate in different soils. Journal of Hydrology, 528, 408-418. https://doi.org/10.1016/j.jhydrol.2015.06.044.
Watanabe, F. S., & Olsen, S. R. (1965). Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Science Society of America Journal, 29(6), 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x.
Wortmann, C. S., & Shapiro, C. A. (2008). The effects of manure application on soil aggregation. Nutrient Cycling in Agroecosystems, 80(2), 173-180. https://doi.org/10.1007/s10705-007-9130-6.
Xu, B., Shao, D., Fang, L., Yang, X., Chen, S., & Gu, W. (2019). Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table. Agricultural Water Management, 214, 87-96. https://doi.org/10.1016/j.agwat.2018.11.008.
Yang, J., Nie, Y., Chen, H., Wang, S., & Wang, K. (2016a). Hydraulic properties of karst fractures filled with soils and regolith materials: Implication for their ecohydrological functions. Geoderma, 276, 93-101. https://doi.org/10.1016/j.geoderma.2016.04.024.
Yang, Q., Luo, W., Jiang, Z., Li, W., & Yuan, D. (2016b). Improve the prediction of soil bulk density by cokriging with predicted soil water content as auxiliary variable. Journal of Soils and Sediments, 16(1), 77-84. https://doi.org/10.1007/s11368-015-1193-4.
Yi, J., Qiu, W., Hu, W., Zhang, H., Liu, M., Zhang, D., Wu, T., Tian, P., & Jiang, Y. (2020). Effects of cultivation history in paddy rice on vertical water flows and related soil properties. Soil and Tillage Research, 200, 104613. https://doi.org/10.1016/j.still.2020.104613.
Zhang, M. K. (2008). Effects of Soil Properties on Phosphorus Subsurface Migration in Sandy Soils. Pedosphere, 18(5), 599-610. https://doi.org/10.1016/S1002-0160(08)60054-5.
Zhang, Z. B., Zhou, H., Lin, H., & Peng, X. (2016). Puddling intensity, sesquioxides, and soil organic carbon impacts on crack patterns of two paddy soils. Geoderma, 262, 155-164. https://doi.org/10.1016/j.geoderma.2015.08.030.
Zhang, Z. B., Zhou, H., Zhao, Q. G., Lin, H., & Peng, X. (2014). Characteristics of cracks in two paddy soils and their impacts on preferential flow. Geoderma, 228-229, 114-121. https://doi.org/10.1016/j.geoderma.2013.07.026.
Refbacks
- There are currently no refbacks.