Soil hydraulic properties and field-scale hydrology as affected by land-management options

Atiqur Rahman, M. G. Mostofa Amin

Abstract

Recurring puddling for long-term rice cultivation forms a plow pan at a particular soil depth, which alters soil hydraulic properties, field-scale hydrology, and nutrient persistence in the soil. This experiment aimed to assess the impact of long-term rice cultivation on root-zone soil hydraulic properties and field-scale hydrology. Soil core samples were collected from four land management options namely, rice‒rice, non-rice, rice and non-rice, and field ridge, at two sites, one with loam and another with silt-loam soil. The soil cores were sampled for each 10 cm layer up to 100 cm depth from three locations of each rotation at both sites. Soil hydraulic parameters were estimated using a pedotransfer function based on the measured bulk density and soil texture. A mathematical model named HYDRUS-1D predicted infiltration, percolation, and surface runoff with the estimated hydraulic properties for three extreme rainfall events, i.e., 3.33, 5, and 6.66 cm hr-1, during a 3-hour period. A plow pan was found at 20–30 cm soil depth for all the land management options but not for the field ridge. The plow pan of the rice‒rice rotation had the highest bulk density (1.53 g cm-3) and the lowest hydraulic conductivity (17.56 cm day-1). However, the top 10 cm soil layer in the rice–rice field had the lowest bulk density (0.93 g cm-3). At both sites, the field ridge had higher infiltration and percolation and lower runoff than other rotations. The study reveals that the field-ridge area of a rice field can be the main water loss pathway. Phosphorus concentration in the rice-rice rotation decreased from 7.7 mg kg-1 in the 10-cm soil layer to 2.49 mg kg-1 in the 100-cm layer. These findings will facilitate making better water management decisions.

Keywords

Bulk density; Hydrological functioning; HYDRUS-1D; Plow pan; Runoff

Full Text:

PDF

References

Ali, M., Amin, M. G. M., & Islam, A. (2005). Reference crop evapo-transpiration (ET0) over Bangladesh and its implication in crop planning. Journal of the Bangladesh Agricultural University, 3(452-2018-3816), 139-147. https://doi.org/10.22004/ag.econ.276419.

Amin, M., Khan, M. J., Jan, M. T., Rehman, M. U., Tariq, J. A., Hanif, M., & Shah, Z. (2014). Effect of different tillage practices on soil physical properties under wheat in semi-arid environment. Soil and Environment, 33(1), 33-37. http://www.se.org.pk/File-Download.aspx?archivedpaperid=712.

Amin, M. G. M., Akter, A., Jahangir, M. M. R., & Ahmed, T. (2021). Leaching and runoff potential of nutrient and water losses in rice field as affected by alternate wetting and drying irrigation. Journal of Environmental Management, 297, 113402. https://doi.org/10.1016/j.jenvman.2021.113402.

Amin, M. G. M., Pedersen, C. Ø., Forslund, A., Veith, T. L., & Laegdsmand, M. (2016). Influence of soil structure on contaminant leaching from injected slurry. Journal of Environmental Management, 184, 289-296. https://doi.org/10.1016/j.jenvman.2016.10.002.

Amin, M. G. M., Šimůnek, J., & Lægdsmand, M. (2014). Simulation of the redistribution and fate of contaminants from soil-injected animal slurry. Agricultural Water Management, 131, 17-29. https://doi.org/10.1016/j.agwat.2013.09.002.

Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L., & Ritz, K. (2019). Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Scientific Reports, 9(1), 7473. https://doi.org/10.1038/s41598-019-43937-6.

Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., & Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). CATENA, 160, 376-384. https://doi.org/10.1016/j.catena.2017.10.009.

Cabangon, R. J., Tuong, T. P., Castillo, E. G., Bao, L. X., Lu, G., Wang, G., Cui, Y., Bouman, B. A. M., Li, Y., Chen, C., & Wang, J. (2004). Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy and Water Environment, 2(4), 195-206. https://doi.org/10.1007/s10333-004-0062-3.

Carrijo, D. R., Lundy, M. E., & Linquist, B. A. (2017). Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203, 173-180. https://doi.org/10.1016/j.fcr.2016.12.002.

Chauhan, B. S., Jabran, K., & Mahajan, G. (Eds.). (2017). Rice Production Worldwide. Springer International Publishing. https://doi.org/10.1007/978-3-319-47516-5.

Chen, A., & Arai, Y. (2020). Chapter Three - Current uncertainties in assessing the colloidal phosphorus loss from soil. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 163, pp. 117-151). Academic Press. https://doi.org/10.1016/bs.agron.2020.05.002

Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research, 136, 61-69. https://doi.org/10.1016/j.still.2013.09.004.

Chen, S. K., & Liu, C. W. (2002). Analysis of water movement in paddy rice fields (I) experimental studies. Journal of Hydrology, 260(1), 206-215. https://doi.org/10.1016/S0022-1694(01)00615-1.

Datta, A., Ullah, H., & Ferdous, Z. (2017). Water Management in Rice. In B. S. Chauhan, K. Jabran, & G. Mahajan (Eds.), Rice Production Worldwide (pp. 255-277). Springer International Publishing. https://doi.org/10.1007/978-3-319-47516-5_11

Fang, J., Zhang, K., Sun, P., Lin, D., Shen, B., & Luo, Y. (2016). Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid. Science of The Total Environment, 571, 471-478. https://doi.org/10.1016/j.scitotenv.2016.07.013.

FAO. (2020). World food and agriculture - statistical yearbook 2020. World Food and Agriculture-Statistical Yearbook. https://doi.org/10.4060/cb1329en.

Fu, T., Chen, H., Zhang, W., Nie, Y., Gao, P., & Wang, K. (2015a). Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest China. Environmental Earth Sciences, 74(3), 2381-2391. https://doi.org/10.1007/s12665-015-4238-5.

Fu, T., Chen, H., Zhang, W., Nie, Y., & Wang, K. (2015b). Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China. Environmental Monitoring and Assessment, 187(3), 92. https://doi.org/10.1007/s10661-015-4320-1.

Fu, T., Gao, H., Liang, H., & Liu, J. (2021). Controlling factors of soil saturated hydraulic conductivity in Taihang Mountain Region, northern China. Geoderma Regional, 26, e00417. https://doi.org/10.1016/j.geodrs.2021.e00417.

Gao, W., Whalley, W. R., Tian, Z., Liu, J., & Ren, T. (2016). A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field. Soil and Tillage Research, 155, 190-198. https://doi.org/10.1016/j.still.2015.08.004.

Havaee, S., Ayoubi, S., Mosaddeghi, M. R., & Keller, T. (2014). Impacts of land use on soil organic matter and degree of compactness in calcareous soils of central Iran. Soil Use and Management, 30(1), 2-9. https://doi.org/10.1111/sum.12092.

He, Y., Lehndorff, E., Amelung, W., Wassmann, R., Alberto, M. C., von Unold, G., & Siemens, J. (2017). Drainage and leaching losses of nitrogen and dissolved organic carbon after introducing maize into a continuous paddy-rice crop rotation. Agriculture, Ecosystems & Environment, 249, 91-100. https://doi.org/10.1016/j.agee.2017.08.021.

Huang, H. C., Liu, C. W., Chen, S. K., & Chen, J. S. (2003). Analysis of percolation and seepage through paddy bunds. Journal of Hydrology, 284(1), 13-25. https://doi.org/10.1016/S0022-1694(03)00228-2.

Islam, M. D. D., Price, A. H., & Hallett, P. D. (2021). Contrasting ability of deep and shallow rooting rice genotypes to grow through plough pans containing simulated biopores and cracks. Plant and Soil, 467(1), 515-530. https://doi.org/10.1007/s11104-021-05131-4.

Islam, M. M., Meerschman, E., Saey, T., De Smedt, P., Van De Vijver, E., Delefortrie, S., & Van Meirvenne, M. (2014). Characterizing Compaction Variability with an Electromagnetic Induction Sensor in a Puddled Paddy Rice Field. Soil Science Society of America Journal, 78(2), 579-588. https://doi.org/10.2136/sssaj2013.07.0289.

Talukolaee, M. J., Darzi Naftchali, A., Parvariji, L. Z., & Ahmadi, M. Z. (2018). Investigating long-term effects of subsurface drainage on soil structure in paddy fields. Soil and Tillage Research, 177, 155-160. https://doi.org/10.1016/j.still.2017.12.012.

Janssen, M., & Lennartz, B. (2009). Water losses through paddy bunds: Methods, experimental data, and simulation studies. Journal of Hydrology, 369(1), 142-153. https://doi.org/10.1016/j.jhydrol.2009.02.038.

Jiang, B., Shen, J., Sun, M., Hu, Y., Jiang, W., Wang, J., Li, Y., & Wu, J. (2021). Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere, 31(1), 103-115. https://doi.org/10.1016/S1002-0160(20)60053-4.

Kakaire, J., Makokha, G. L., Mwanjalolo, M., Mensah, A. K., & Menya, E. (2015). Effects of Mulching on Soil Hydro-Physical Properties in Kibaale Sub-catchment, South Central Uganda. Applied Ecology and Environmental Sciences, 3(5), 127-135. https://doi.org/10.12691/aees-3-5-1.

Kar, S. K., Patra, S., Singh, R. M., Sankar, M., Kumar, S., Singh, D., Madhu, M.,& Singla, S. (2023a). Impact of land use reformation on soil hydraulic properties and recovery potential of conservation tillage in India's North-West Himalayan region. Ecohydrology & Hydrobiology, 23(2), 290-303. https://doi.org/10.1016/j.ecohyd.2022.12.008.

Kar, S. K., Singh, R. M., Patra, S., Sankar, M., Kumar, S., & Singh, A. (2023b). Implication of land use shifting on land degradation and restoration potential of conservation agriculture in India's North-West Himalayan region. Geoderma Regional, 32, e00616. https://doi.org/10.1016/j.geodrs.2023.e00616.

Kirkham, J. M., Smith, C. J., Doyle, R. B., & Brown, P. H. (2019). Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol). PeerJ, 6, e6002. https://doi.org/10.7717/peerj.6002.

Leung, A. K., Garg, A., & Ng, C. W. W. (2015). Effects of plant roots on soil-water retention and induced suction in vegetated soil. Engineering Geology, 193, 183-197. https://doi.org/10.1016/j.enggeo.2015.04.017.

Li, Y., Šimůnek, J., Jing, L., Zhang, Z., & Ni, L. (2014). Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D. Agricultural Water Management, 142, 38-46. https://doi.org/10.1016/j.agwat.2014.04.021.

Liu, Q., Kan, Z., He, C., & Zhang, H. (2020). Effects of Strategic Tillage on Soil Physicochemical Properties and Grain Yield in the North China Plain. Agronomy, 10(8), 1167. https://doi.org/10.3390/agronomy10081167.

Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., & Tan, Z. (2020). Root-induced changes of soil hydraulic properties – A review. Journal of Hydrology, 589, 125203. https://doi.org/10.1016/j.jhydrol.2020.125203.

Mairghany, M., Yahya, A., Adam, N. M., Su, A. S. M., Aimrun, W., & Elsoragaby, S. (2019). Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia. Soil and Tillage Research, 194, 104318. https://doi.org/10.1016/j.still.2019.104318.

Marcacci, K. M., Warren, J. M., Perfect, E., & Labbé, J. L. (2022). Influence of living grass Roots and endophytic fungal hyphae on soil hydraulic properties. Rhizosphere, 22, 100510. https://doi.org/10.1016/j.rhisph.2022.100510.

McCarty, L. B., Hubbard, L. R., & Quisenberry, V. L. (2016). Applied soil physical properties, drainage, and irrigation strategies. Springer. https://doi.org/10.1007/978-3-319-24226-2

Mehler, K., Schöning, I., & Berli, M. (2014). The Importance of Rock Fragment Density for the Calculation of Soil Bulk Density and Soil Organic Carbon Stocks. Soil Science Society of America Journal, 78(4), 1186-1191. https://doi.org/10.2136/sssaj2013.11.0480.

Mo’allim, A. A., Kamal, M. R., Muhammed, H. H., Yahaya, N. K. E. M., Zawawe, M. A. b. M., Man, H. B. C., & Wayayok, A. (2018). An Assessment of the Vertical Movement of Water in a Flooded Paddy Rice Field Experiment Using Hydrus-1D. Water, 10(6), 783. https://doi.org/10.3390/w10060783.

Mondal, S., Kumar, S., Haris, A. A., Dwivedi, S. K., Bhatt, B. P., & Mishra, J. S. (2016). Effect of different rice establishment methods on soil physical properties in drought-prone, rainfed lowlands of Bihar, India. Soil Research, 54(8), 997-1006. https://doi.org/10.1071/SR15346.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153.

Nanko, K., Giambelluca, T. W., Sutherland, R. A., Mudd, R. G., Nullet, M. A., & Ziegler, A. D. (2015). Erosion Potential under Miconia calvescens Stands on the Island of Hawai‘i. Land Degradation & Development, 26(3), 218-226. https://doi.org/10.1002/ldr.2200.

Nawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291-309. https://doi.org/10.1007/s13593-011-0071-8.

Neumann, R. B., Polizzotto, M. L., Badruzzaman, A. B. M., Ali, M. A., Zhang, Z., & Harvey, C. F. (2009). Hydrology of a groundwater-irrigated rice field in Bangladesh: Seasonal and daily mechanisms of infiltration. Water Resources Research, 45(9). https://doi.org/10.1029/2008WR007542.

Osunbitan, J. A., Oyedele, D. J., & Adekalu, K. O. (2005). Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research, 82(1), 57-64. https://doi.org/10.1016/j.still.2004.05.007.

Pang, L., Lafogler, M., Knorr, B., McGill, E., Saunders, D., Baumann, T., Abraham, P., & Close, M. (2016). Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media. Science of The Total Environment, 550, 60-68. https://doi.org/10.1016/j.scitotenv.2016.01.075.

Patil, M. D., & Das, B. S. (2013). Assessing the effect of puddling on preferential flow processes through under bund area of lowland rice field. Soil and Tillage Research, 134, 61-71. https://doi.org/10.1016/j.still.2013.07.008.

Patra, S., Julich, S., Feger, K. H., Jat, M. L., Jat, H., Sharma, P. C., & Schwärzel, K. (2019). Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. Soil and Tillage Research, 192, 151-163. https://doi.org/10.1016/j.still.2019.05.003.

Peng, S. Z., Yang, S. H., Xu, J. Z., Luo, Y. F., & Hou, H. J. (2011). Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy and Water Environment, 9(3), 333-342. https://doi.org/10.1007/s10333-010-0246-y.

Pereira, L. S., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108, 39-51. https://doi.org/10.1016/j.agwat.2011.08.022.

Phogat, V., Skewes, M. A., McCarthy, M. G., Cox, J. W., Šimůnek, J., & Petrie, P. R. (2017). Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip. Agricultural Water Management, 180, 22-34. https://doi.org/10.1016/j.agwat.2016.10.016.

Rajamanthri, K., Jotisankasa, A., & Aramrak, S. (2021). Effects of Chrysopogon zizanioides root biomass and plant age on hydro-mechanical behavior of root-permeated soils. International Journal of Geosynthetics and Ground Engineering, 7(2), 36. https://doi.org/10.1007/s40891-021-00271-0.

Scalenghe, R., Edwards, A. C., Barberis, E., & Ajmone-Marsan, F. (2014). Release of phosphorus under reducing and simulated open drainage conditions from overfertilised soils. Chemosphere, 95, 289-294. https://doi.org/10.1016/j.chemosphere.2013.09.016.

Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M. A., Tung, S. A., Hafeez, A., & Souliyanonh, B. (2017). Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24(11), 10056-10067. https://doi.org/10.1007/s11356-017-8421-y.

Shao, W., Ni, J., Leung, A. K., Su, Y., & Ng, C. W. W. (2017). Analysis of plant root–induced preferential flow and pore-water pressure variation by a dual-permeability model. Canadian Geotechnical Journal, 54(11), 1537-1552. https://doi.org/10.1139/cgj-2016-0629.

Šimůnek, J., Šejna, M., Saito, H., Sakai, M., & van Genuchten, M. T. (2009). The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media (Vol. 1). Department of Environmental Sciences, University of California, Riverside. https://www.pc-progress.com/Downloads/Pgm_hydrus1D/HYDRUS1D-4.08.pdf

Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2008). Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone Journal, 7(2), 587-600. https://doi.org/10.2136/vzj2007.0077.

Singh, K., Mishra, A. K., Singh, B., Singh, R. P., & Patra, D. D. (2016). Tillage Effects on Crop Yield and Physicochemical Properties of Sodic Soils. Land Degradation & Development, 27(2), 223-230. https://doi.org/10.1002/ldr.2266.

Tang, X. Y., Katou, H., & Suzuki, K. (2020). Liming effects on dissolved and colloid-associated transport of cadmium in soil under intermittent simulated rainfall. Journal of Hazardous Materials, 400, 123244. https://doi.org/10.1016/j.jhazmat.2020.123244.

Toor, G. S., & Sims, J. T. (2015). Managing Phosphorus Leaching in Mid-Atlantic Soils: Importance of Legacy Sources. Vadose Zone Journal, 14(12), vzj2015.2008.0108. https://doi.org/10.2136/vzj2015.08.0108.

de Moraes, M. T., Debiasi, H., Carlesso, R., Franchini, J. C., da Silva, V. R., & da Luz, F. B. (2016). Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil and Tillage Research, 155, 351-362. https://doi.org/10.1016/j.still.2015.07.015.

van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.

van Genuchten, M. T., Leij, F., & Yates, S. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryId=130162.

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Franssen, H. J. H., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., & Young, I. M. (2016). Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 15(5), vzj2015.2009.0131. https://doi.org/10.2136/vzj2015.09.0131.

Wang, G., Fang, Q., Wu, B., Yang, H., & Xu, Z. (2015). Relationship between soil erodibility and modeled infiltration rate in different soils. Journal of Hydrology, 528, 408-418. https://doi.org/10.1016/j.jhydrol.2015.06.044.

Watanabe, F. S., & Olsen, S. R. (1965). Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Science Society of America Journal, 29(6), 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x.

Wortmann, C. S., & Shapiro, C. A. (2008). The effects of manure application on soil aggregation. Nutrient Cycling in Agroecosystems, 80(2), 173-180. https://doi.org/10.1007/s10705-007-9130-6.

Xu, B., Shao, D., Fang, L., Yang, X., Chen, S., & Gu, W. (2019). Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table. Agricultural Water Management, 214, 87-96. https://doi.org/10.1016/j.agwat.2018.11.008.

Yang, J., Nie, Y., Chen, H., Wang, S., & Wang, K. (2016a). Hydraulic properties of karst fractures filled with soils and regolith materials: Implication for their ecohydrological functions. Geoderma, 276, 93-101. https://doi.org/10.1016/j.geoderma.2016.04.024.

Yang, Q., Luo, W., Jiang, Z., Li, W., & Yuan, D. (2016b). Improve the prediction of soil bulk density by cokriging with predicted soil water content as auxiliary variable. Journal of Soils and Sediments, 16(1), 77-84. https://doi.org/10.1007/s11368-015-1193-4.

Yi, J., Qiu, W., Hu, W., Zhang, H., Liu, M., Zhang, D., Wu, T., Tian, P., & Jiang, Y. (2020). Effects of cultivation history in paddy rice on vertical water flows and related soil properties. Soil and Tillage Research, 200, 104613. https://doi.org/10.1016/j.still.2020.104613.

Zhang, M. K. (2008). Effects of Soil Properties on Phosphorus Subsurface Migration in Sandy Soils. Pedosphere, 18(5), 599-610. https://doi.org/10.1016/S1002-0160(08)60054-5.

Zhang, Z. B., Zhou, H., Lin, H., & Peng, X. (2016). Puddling intensity, sesquioxides, and soil organic carbon impacts on crack patterns of two paddy soils. Geoderma, 262, 155-164. https://doi.org/10.1016/j.geoderma.2015.08.030.

Zhang, Z. B., Zhou, H., Zhao, Q. G., Lin, H., & Peng, X. (2014). Characteristics of cracks in two paddy soils and their impacts on preferential flow. Geoderma, 228-229, 114-121. https://doi.org/10.1016/j.geoderma.2013.07.026.

Refbacks

  • There are currently no refbacks.