Effects of soil amendment from herbal and eucalyptus industrial waste on methane emission and rice yield

Feriana Dwi Kurniawati, Suntoro Suntoro, Prihasto Setyanto, Vita Ratri Cahyani

Abstract

The use of chemical fertilizer in rice fields contributes to increased global warming via enhanced emission of methane (CH4) into the atmosphere. Therefore, composting has been proposed to reduce methane emissions in the agricultural field. This study aimed to determine the CH4 emission and rice yield affected by compost from three different types of compost: herbal compost, eucalyptus compost, and manure compost. This randomized block design study was conducted from November 2019 to May 2020. There were 8 fertilizer treatments applied to the rice fields, namely: herbal compost 10 tons/ha. (O1), eucalyptus compost 10 tons/ha (O2), manure compost 10 tons/ha (O3), no compost no chemical fertilizer (as a control) (O4), herbal compost 5 tons/ha + chemical fertilizer/CF (C1), eucalyptus compost 5 tons/ha + CF (C2), manure compost 5 tons/ha + CF (C3), and only chemical fertilizer (C4), then all treatments replicated three times. For the chemical fertilizer (CF) the dose is 166 kg/ha urea + 166 kg/ha ZA + 330 kg/ha TSP. The result indicated that the compost manure 10 tons/ha (O3) and the combination compost manure 5 tons/ha + CF (C3) produced the highest rice yields (6.89 -6.94 tons/ha) but impacted the highest methane emissions (505.3 – 544.6 Kg.CH4 /ha/season). The important finding showed that among all the treatments, a combination of compost eucalyptus 5 tons/ha + CF (C2) and compost eucalyptus 10 tons/ha (O2) mitigated methane emission to the lowest level (296.6 -305.2 Kg.CH4/ha/season) and gave high rice yields (6.77-6.78 tons/ha) that were not significantly different from those of compost manure (O3 and C3). In addition, the combination of compost herbal 5 tons/ha and chemical fertilizer (C1) affected the lower methane emissions than manure compost and gave a high level of grain yield that was not significantly different from those of manure compost (O3 and C3) and eucalyptus compost (O2 and C2). 

Keywords

Andisols; Chemical Fertilizer; Compost; Manure; Organic Farming

Full Text:

PDF

References

Abdul Halim, N. S. a., Abdullah, R., Karsani, S. A., Osman, N., Panhwar, Q. A., & Ishak, C. F. (2018). Influence of Soil Amendments on the Growth and Yield of Rice in Acidic Soil. Agronomy, 8(9), 165. https://doi.org/10.3390/agronomy8090165.

Ashraf, M. N., Hu, C., Xu, X., Aziz, T., Wu, L., Waqas, M. A., . . . Xu, M. (2023). Long-term manure application increased soil organic carbon and nitrogen mineralization through accumulation of unprotected and physically protected carbon fractions. Pedosphere, 33(2), 343-354. https://doi.org/10.1016/j.pedsph.2022.06.047.

Ayalon, O., Avnimelech, Y., & Shechter, M. (2001). Solid Waste Treatment as a High-Priority and Low- Cost Alternative for Greenhouse Gas Mitigation. Environmental Management, 27(5), 697-704. https://doi.org/10.1007/s002670010180.

Cahyani, V. R., & Kimura, M. (2009). Succession and phylogenetic composition of microbial communities responsible for the composting process of rice straw. In J. C. Pereira & J. L. Bolin (Eds.), Composting: Processing, Material and Approaches. Nova Science Publishers, Inc.

Cahyani, V. R., Murase, J., Asakawa, S., & Kimura, M. (2009). Change in T4-type bacteriophage communities during the composting process of rice straw: Estimation from the major capsid gene (g23) sequences. Soil Science & Plant Nutrition, 55(4), 468-477. https://doi.org/10.1111/j.1747-0765.2009.00391.x.

Cahyani, V. R., Watanabe, A., Matsuya, K., Asakawa, S., & Kimura, M. (2002). Succession of microbiota estimated by phospholipid fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Science and Plant Nutrition, 48(5), 735-743. https://doi.org/10.1080/00380768.2002.10409264.

Carmeis Filho, A. C. D. A., Crusciol, C. A. C., Nascente, A. S., Mauad, M., & Garcia, R. A. (2017). Influência de níveis de potássio no crescimento radicular e na absorção de nutrientes em cultivares de arroz de terras altas. Revista Caatinga, 30. https://doi.org/10.1590/1983-21252017V30N104RC.

Conrad, R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1(5), 285-292. https://doi.org/10.1111/j.1758-2229.2009.00038.x.

Dong, D., Yang, M., Wang, C., Wang, H., Li, Y., Luo, J., & Wu, W. (2013). Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. Journal of Soils and Sediments, 13(8), 1450-1460. https://doi.org/10.1007/s11368-013-0732-0.

Epule, E. T., Peng, C., & Mafany, N. M. (2011). Methane emissions from paddy rice fields: strategies towards achieving a win-win sustainability scenario between rice production and methane emission reduction. Journal of Sustainable Development, 4(6), 188. https://doi.org/10.5539/jsd.v4n6p188.

Farrell, M., Griffith, G. W., Hobbs, P. J., Perkins, W. T., & Jones, D. L. (2009). Microbial diversity and activity are increased by compost amendment of metal-contaminated soil. FEMS Microbiology Ecology, 71(1), 94-105. https://doi.org/10.1111/j.1574-6941.2009.00793.x.

Haque, M. M., Biswas, J. C., Islam, M. R., Islam, A., & Kabir, M. S. (2019). Effect of long-term chemical and organic fertilization on rice productivity, nutrient use-efficiency, and balance under a rice-fallow-rice system. Journal of Plant Nutrition, 42(20), 2901-2914. https://doi.org/10.1080/01904167.2019.1659338.

Haque, M. M., Datta, J., Ahmed, T., Ehsanullah, M., Karim, M. N., Akter, M. S., . . . EL Sabagh, A. (2021). Organic Amendments Boost Soil Fertility and Rice Productivity and Reduce Methane Emissions from Paddy Fields under Sub-Tropical Conditions. Sustainability, 13(6), 3103. https://doi.org/10.3390/su13063103.

Hossen, M. S., Islam, M. N., Alamand, M. R., & Baten, M. A. (2015). Effects of Different Rates of Compost Application on Methane Emission and Crop Yield in Aman Rice [Compost, methane, rice, gas chromatography, FID]. 2015, 2(3), 7. http://www.journals.wsrpublishing.com/index.php/tjanrs/article/view/324.

IPI. (2022). The Effects of Nitrogen Form on Interactions with Potassium. E-ifc No.29 – Research findings. International Potash Institute Retrieved December 10, 2022 from https://www.ipipotash.org/publications/eifc-214

Kartikawati, R., & Nursyamsi, D. (2013). Pengaruh Pengairan, Pemupukan, Dan Penghambat Nitrifikasi Terhadap Emisi Gas Rumah Kaca Di Lahan Sawah Tanah Mineral [emisi gas rumah kaca, lahan sawah, pengairan, pemupukan, tanah mineral]. 2013, 7(2), 15. https://doi.org/10.20886/jklh.2013.7.2.93-107.

Kelbesa, W. A. (2021). Effect of compost in improving soil properties and its consequent effect on crop production–A review. Journal of Natural Sciences Research, 12(10), 15-25. https://doi.org/10.7176/JNSR/12-10-02.

Kim, C., Walitang, D. I., Roy Choudhury, A., Lee, Y., Lee, S., Chun, H., . . . Sa, T. (2022). Changes in Soil Chemical Properties Due to Long-Term Compost Fertilization Regulate Methane Turnover Related Gene Abundances in Rice Paddy. Applied Sciences, 12(5), 2652. https://doi.org/10.3390/app12052652.

Kim, W.-J., Bui, L. T., Chun, J.-B., McClung, A. M., & Barnaby, J. Y. (2018). Correlation between methane (CH4) emissions and root aerenchyma of rice varieties. Plant breeding and biotechnology, 6(4), 381-390. https://doi.org/10.9787/PBB.2018.6.4.381.

Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G., & Heitman, J. L. (2020). The effects of compost incorporation on soil physical properties in urban soils – A concise review. Journal of Environmental Management, 261, 110209. https://doi.org/10.1016/j.jenvman.2020.110209.

Liu, Y., & Whitman, W. B. (2008). Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Annals of the New York Academy of Sciences, 1125(1), 171-189. https://doi.org/10.1196/annals.1419.019.

Lopes, E. A. P., Silva, A. D. A. d., Mergulhão, A. C. d. E. S., Silva, E. V. N. d., Santiago, A. D., & Figueiredo, M. d. V. B. (2019). Co-Inoculation of growth promoting bacteria and glomus clarum in micropropagated cassava plants. Revista Caatinga, 32. https://doi.org/10.1590/1983-21252019v32n116rc.

Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4(3), 351-365. https://doi.org/10.1017/S1751731109990620.

Martínez-Blanco, J., Lazcano, C., Christensen, T. H., Muñoz, P., Rieradevall, J., Møller, J., . . . Boldrin, A. (2013). Compost benefits for agriculture evaluated by life cycle assessment. A review. Agronomy for Sustainable Development, 33(4), 721-732. https://doi.org/10.1007/s13593-013-0148-7.

Martiningsih, E., Sumantra, I. K., & Sujana, I. P. (2018). The Profile of Salak Gula Pasir’s Farmer in Pajahan Village–Bali. International Journal of Contemporary Research and Review, 9(8), 20254-20256. https://doi.org/10.15520/ijcrr/2018/9/08/583.

Mboyerwa, P. A., Kibret, K., Mtakwa, P., & Aschalew, A. (2022). Lowering nitrogen rates under the system of rice intensification enhanced rice productivity and nitrogen use efficiency in irrigated lowland rice. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09140.

Minamikawa, K., Tokida, T., Sudo, S., Padre, A., & Yagi, K. (2015). Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan. https://globalresearchalliance.org/wp-content/uploads/2018/02/Guidelines-for-Measuring-CH4-and-N2O-Emissions-from-Rice-Paddies-by-Manually-Operated-Closed-Chamber-Method-2015.pdf

Nira, R., & Miura, S. (2019). Rice yield and soil fertility of an organic paddy system with winter flooding. Soil Science and Plant Nutrition, 65(4), 377-385. https://doi.org/10.1080/00380768.2019.1632675.

Nungkat, P., Kusuma, Z., & Handayanto, E. (2015). Effects of organic matter application on methane emission from paddy fields adopting organic farming system. 2015, 2(2), 10. https://doi.org/10.15243/jdmlm.2014.022.303.

Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N., & Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 190, 140-157. https://doi.org/10.1016/j.jenvman.2016.12.051.

Pujiarti, R., Ohtani, Y., & Ichiura, H. (2011). Physicochemical properties and chemical compositions of Melaleuca leucadendron leaf oils taken from the plantations in Java, Indonesia. Journal of Wood Science, 57(5), 446-451. https://doi.org/10.1007/s10086-011-1183-0.

Rachmadiyanto, A. N., Wanda, I. F., Rinandio, D. S., & Magandhi, M. (2020). Evaluasi kesuburan tanah pada berbagai tutupan lahan di Kebun Raya Bogor. Buletin Kebun Raya, 23(2), 114–125-114–125. https://doi.org/10.14203/bkr.v23i2.263.

Razavipour, T., Moghaddam, S. S., Doaei, S., Noorhosseini, S. A., & Damalas, C. A. (2018). Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes. Agricultural Water Management, 209, 1-10. https://doi.org/10.1016/j.agwat.2018.05.020.

Sallam, S. M. A., Bueno, I. C. S., Nasser, M. E. A., & Abdalla, A. L. (2010). Effect of eucalyptus (Eucalyptus citriodora) fresh or residue leaves on methane emission in vitro. Italian Journal of Animal Science, 9(3), e58. https://doi.org/10.4081/ijas.2010.e58.

Sarwar, G., Hussain, N., Schmeisky, H., Muhammad, S., Ibrahim, M., & Safdar, E. (2007). Use of compost an environment friendly technology for enhancing rice-wheat production in Pakistan. Pakistan Journal of Botany, 39(5), 1553-1558. https://www.researchgate.net/publication/271574351_USE_OF_COMPOST_AN_ENVIRONMENT_FRIENDLY_TECHNOLOGY_FOR_ENHANCING_RICE-WHEAT_PRODUCTION_IN_PAKISTAN.

Schirmer, W. N., Jucá, J. F. T., Schuler, A. R. P., Holanda, S., & Jesus, L. L. (2014). Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: evaluation in refuse of diferent ages. Brazilian Journal of Chemical Engineering, 31. https://doi.org/10.1590/0104-6632.20140312s00002468

Setyanto, P., Rosenani, A., Boer, R., Fauziah, C., & Khanif, M. (2004). The effect of rice cultivars on methane emission from irrigated rice field. Indonesian Journal of Agricultural Science, 5(1), 20-31. https://repository.pertanian.go.id/server/api/core/bitstreams/459b62bf-b3cf-43bc-976a-392b9fe20deb/content.

Sopha, G. A., Hermanto, C., Kerckhoffs, H., Heyes, J. A., & Hanly, J. (2022). Response of selected chemical properties of extremely acidic soils on the application of limes, rice husk biochar and zeolite. Journal of Degraded & Mining Lands Management, 10(1). https://doi.org/10.15243/jdmlm.2022.101.4011.

Soumare, A., Sarr, D., & DiÉDhiou, A. G. (2023). Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere, 33(1), 105-115. https://doi.org/10.1016/j.pedsph.2022.06.025.

Trinh, M. V., Tesfai, M., Borrell, A., Nagothu, U. S., Bui, T. P. L., Quynh, V. D., & Thanh, L. Q. (2017). Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields. Paddy and Water Environment, 15(2), 317-330. https://doi.org/10.1007/s10333-016-0551-1.

Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications. PLOS ONE, 12(1), e0169254. https://doi.org/10.1371/journal.pone.0169254.

Yang, R., Dong, J., Li, C., Wang, L., Quan, Q., & Liu, J. (2021). The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change. PLOS ONE, 16(5), e0250880. https://doi.org/10.1371/journal.pone.0250880.

Yang, Y.-L., Xu, J., Rao, Y.-C., Zeng, Y.-J., Liu, H.-J., Zheng, T.-T., . . . Shi, Q.-H. (2016). Cloning and functional analysis of pale-green leaf (PGL10) in rice (Oryza sativa L.). Plant Growth Regulation, 78(1), 69-77. https://doi.org/10.1007/s10725-015-0075-5.

Zhang, X., Khalid, M., Wang, R., Chi, Y., Zhang, D., Chu, S., . . . Zhou, P. (2023). Enhancing lettuce growth and rhizosphere microbial community with Bacillus safensis YM1 compost in soilless cultivation: An agricultural approach for kitchen waste utilization. Scientia Horticulturae, 321, 112345. https://doi.org/10.1016/j.scienta.2023.112345.

Zhao, T., Xing, Z., Zhang, L., Zhang, Y., & Gao, Y. (2015). Biodegradation of chlorinated hydrocarbons by facultative Methanotrophs [Review]. Asian Journal of Chemistry, 27(1), 9-18. https://doi.org/10.14233/ajchem.2015.18022.

Refbacks

  • There are currently no refbacks.