Compost of peanuts residue and rice straw compost on soil Nitrogen forms and upland rice yield

Anis Sholihah, Agus Sugianto, Mahayu Woro Lestari

Abstract

This study provides an innovation in making compost from rice straw (low quality) mixed with peanut residue (high quality) to improve the quality of rice straw compost. The purpose of this research was to discover the optimum composition of a mixture of peanut residue and straw for mineralization, absorption, and Nitrogen Use Efficiency (NUE) and its effect on upland rice plants. The study was conducted in three stages. The first stage determined the quality of five compost mixtures: C1, C2, C3, C4, and C5. The second phase of testing for cumulative N minerals was performed after 1, 2, 4, and 8 weeks of incubation. The third stage examined the impact of the compost mixture on the growth and yield of upland rice in comparison with two treatments, namely the control and NPK fertilizer. The results showed a similarity in the forms of mineralization, where the cumulative N mineral increased with the addition of peanut residue to the compost mixture. The use of a mixture of peanut residue and rice straw compost increased net mineralization by 37.27% (C5) to 59.48% (C1), N uptake by 49.19% (C5) to 62.95% (C3), and NUE by 15.04% (C4) to 51.48% (C3). A strong relationship was detected between the quality of the compost and the forms of N in the soil, particularly the nitrate content, total N minerals, and N microbial biomass, with correlation coefficients of 0.92, 0.88, and 0.94, respectively. A strong to very strong relationship was detected between N form and N uptake (r = 0.84), plant height (r = 0.79), number of tillers (r = 0.78), yield of rice plants (r = 0.93 (plant total dry weight), and r = 0.76 (grain weight). The optimum N uptake, NUE, and yield of upland rice were shown by C3 treatment of 405.28 mg pot-1, 42.21%, and 6.19 tons ha-1, respectively.

Keywords

Compost; Net Mineralization; N Uptake; Peanut Residue; Rice Straw

Full Text:

PDF

References

Abera, G., Wolde-meskel, E., & Bakken, L. R. (2012). Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biology and Fertility of Soils, 48(1), 51-66. https://doi.org/10.1007/s00374-011-0607-8.

Abubakar, U., Yusuf, K., Safiyanu, I., Abdullahi, S., Saidu, S., Abdu, G., & Indee, A. (2016). Proximate and mineral composition of corn cob, banana and plantain peels. International Journal of Food Science and Nutrition, 1(6), 25-27. https://www.foodsciencejournal.com/archives/2016/vol1/issue6/1-5-23.

Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., . . . Kuzyakov, Y. (2014). Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20(7), 2356-2367. https://doi.org/10.1111/gcb.12475.

Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S., McNickle, G. G., . . . Jastrow, J. D. (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201(1), 31-44. https://doi.org/10.1111/nph.12440.

Cheng, Z., Meng, L., Yin, T., Li, Y., Zhang, Y., & Li, S. (2023). Changes in Soil Rhizobia Diversity and Their Effects on the Symbiotic Efficiency of Soybean Intercropped with Maize. Agronomy, 13(4), 997. https://doi.org/10.3390/agronomy13040997.

Darby, I., Xu, C.-Y., Wallace, H. M., Joseph, S., Pace, B., & Bai, S. H. (2016). Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar. Environmental Science and Pollution Research, 23(11), 11267-11278. https://doi.org/10.1007/s11356-016-6336-7.

Debiase, G., Montemurro, F., Fiore, A., Rotolo, C., Farrag, K., Miccolis, A., & Brunetti, G. (2016). Organic amendment and minimum tillage in winter wheat grown in Mediterranean conditions: Effects on yield performance, soil fertility and environmental impact. European Journal of Agronomy, 75, 149-157. https://doi.org/10.1016/j.eja.2015.12.009.

Dhaliwal, S. S., Sharma, V., Shukla, A. K., Gupta, R. K., Verma, V., Kaur, M., . . . Singh, P. (2023). Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India. Agriculture, 13(3), 556. https://doi.org/10.3390/agriculture13030556.

Duarte, E. M. G., Cardoso, I. M., Stijnen, T., Mendonça, M. A. F. C., Coelho, M. S., Cantarutti, R. B., . . . Mendonça, E. S. (2013). Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems. Agroforestry Systems, 87(4), 835-847. https://doi.org/10.1007/s10457-013-9600-6.

Gaitanis, D., Lukac, M., & Tibbett, M. (2023). Fragment size and diversity of mulches affect their decomposition, nutrient dynamics, and mycorrhizal root colonisation. Scientific Reports, 13(1), 9383. https://doi.org/10.1038/s41598-023-36457-x.

Han, Y., Ma, W., Zhou, B., Yang, X., Salah, A., Li, C., . . . Zhao, M. (2020). Effects of Straw-Return Method for the Maize–Rice Rotation System on Soil Properties and Crop Yields. Agronomy, 10(4), 461. https://doi.org/10.3390/agronomy10040461.

Hansen, V., Müller-Stöver, D., Imparato, V., Krogh, P. H., Jensen, L. S., Dolmer, A., & Hauggaard-Nielsen, H. (2017). The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study. Journal of Environmental Management, 186, 88-95. https://doi.org/10.1016/j.jenvman.2016.10.041.

Herviyanti, Maulana, A., Lita, A. L., Fathi, A. N. M., Monikasari, M., Amalia, F., . . . Refdi, C. W. (2023). Approximate of C/N Ratio for Ameliorant Formulations from Local Resources in Horticultural Production Centers, Banuhampu Agam. IOP Conference Series: Earth and Environmental Science, 1182(1), 012031. https://doi.org/10.1088/1755-1315/1182/1/012031.

Heuck, C., & Spohn, M. (2016). Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality. Biogeochemistry, 131(1), 229-242. https://doi.org/10.1007/s10533-016-0276-7.

Hossain, M. Z., Fragstein und Niemsdorff, P. v., & Heß, J. (2017). Effect of different organic wastes on soil properties and plant growth and yield: a review. Scientia Agriculturae Bohemica, 48(4), 224-237. https://sab.czu.cz/dl/60359?lang=en.

Jani, A. D., Mulvaney, M. J., Balkcom, K. S., Wood, C. W., Jordan, D. L., Wood, B. H., & Devkota, P. (2020). Peanut residues supply minimal plant-available nitrogen on a major soil series in the USA peanut basin. Soil Use and Management, 36(2), 274-284. https://doi.org/10.1111/sum.12563.

Jin, V. L., Haney, R. L., Fay, P. A., & Polley, H. W. (2013). Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biology and Biochemistry, 58, 172-180. https://doi.org/10.1016/j.soilbio.2012.11.024.

Kader, M. A., Sleutel, S., Begum, S. A., Moslehuddin, A. Z. M., & De neve, S. (2013). Nitrogen mineralization in sub-tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents. European Journal of Soil Science, 64(1), 47-57. https://doi.org/10.1111/ejss.12005.

Kaleeem Abbasi, M., Mahmood Tahir, M., Sabir, N., & Khurshid, M. (2015). Impact of the addition of different plant residues on nitrogen mineralization–immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth, 6(1), 197-205. https://doi.org/10.5194/se-6-197-2015.

Kang, P.-G., Mitchell, M. J., McHale, P. J., Driscoll, C. T., Inamdar, S., & Park, J.-H. (2016). Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed. Biogeosciences, 13(9), 2787-2801. https://doi.org/10.5194/bg-13-2787-2016.

Kasifah, Syekhfani, Nuraini, Y., & Handayanto, E. (2014). Effects of plant residue and compost extracts on phosphorus solubilization of rock phosphate and soil. American-Eurasian Journal of Sustainable Agriculture, 8(5), 43-49.

Keeney, D. R., & Nelson, D. W. (1983). Nitrogen - Inorganic Forms. In Methods of Soil Analysis (pp. 643-698). https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Klotzbücher, T., Marxen, A., Vetterlein, D., Schneiker, J., Türke, M., van Sinh, N., . . . Jahn, R. (2015). Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic and Applied Ecology, 16(8), 665-673. https://doi.org/10.1016/j.baae.2014.08.002.

La Habi, M., Nendissa, J. I., Marasabessy, D., & Kalay, A. M. (2018). Ketersediaan Fosfat, Serapan Fosfat, Dan Hasil Tanaman Jagung (Zea mays L.) Akibat Pemberian Kompos Granul Ela Sagu Dengan Pupuk Fosfat Pada Inceptisols. Agrologia : Jurnal Ilmu Budidaya Tanaman, 7(1), 42-52. https://doi.org/10.30598/a.v7i1.356.

Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Krüger, J., Grignani, C., . . . Spiegel, H. (2014). Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use and Management, 30(4), 524-538. https://doi.org/10.1111/sum.12151.

Lestari, M. W., Sholihah, A., & Sugianto, A. (2022). Pistia Stratiotes Utilization to Improve the Straw Compost Quality [journal article]. Journal of Ecological Engineering, 23(9), 78-87. https://doi.org/10.12911/22998993/151764.

Liang, Q., Shi, X., Li, N., Shi, F., Tian, Y., Zhang, H., . . . Luo, H. (2022). Fertilizer Reduction Combined with Organic Liquid Fertilizer Improved Canopy Structure and Function and Increased Cotton Yield. Agronomy, 12(8), 1759. https://doi.org/10.3390/agronomy12081759.

Liu, C., Lu, M., Cui, J., Li, B., & Fang, C. (2014). Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biology, 20(5), 1366-1381. https://doi.org/10.1111/gcb.12517.

Liu, S., Yang, R., & Hou, C. (2023). Effect of Enzyme Activity Changes on Decomposition Characteristics of Leaf Litter Mixed Decomposition of Configurated Tree Species in Ecological Tea Garden. Agriculture, 13(2), 394. https://doi.org/10.3390/agriculture13020394.

Liu, S., Yang, R., Hou, C., Guo, J., & Ma, J. (2022). Effects of the Decomposition of Mixed Plant Residues in Ecological Tea Garden Soil. Agronomy, 12(11), 2717. https://doi.org/10.3390/agronomy12112717.

Maceda, A., & Terrazas, T. (2022). Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin. Polymers, 14(5), 961. https://doi.org/10.3390/polym14050961.

Meier, I. C., Finzi, A. C., & Phillips, R. P. (2017). Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 106, 119-128. https://doi.org/10.1016/j.soilbio.2016.12.004.

Meinander, O., Heikkinen, E., Aurela, M., & Hyvärinen, A. (2020). Sampling, Filtering, and Analysis Protocols to Detect Black Carbon, Organic Carbon, and Total Carbon in Seasonal Surface Snow in an Urban Background and Arctic Finland (>60° N). Atmosphere, 11(9), 923. https://doi.org/10.3390/atmos11090923.

Mózner, Z., Tabi, A., & Csutora, M. (2012). Modifying the yield factor based on more efficient use of fertilizer—The environmental impacts of intensive and extensive agricultural practices. Ecological Indicators, 16, 58-66. https://doi.org/10.1016/j.ecolind.2011.06.034.

Mulvaney, M. J., Balkcom, K. S., Wood, C. W., & Jordan, D. (2017). Peanut Residue Carbon and Nitrogen Mineralization under Simulated Conventional and Conservation Tillage. Agronomy Journal, 109(2), 696-705. https://doi.org/10.2134/agronj2016.04.0190.

Musyoka, M. W., Adamtey, N., Muriuki, A. W., & Cadisch, G. (2017). Effect of organic and conventional farming systems on nitrogen use efficiency of potato, maize and vegetables in the Central highlands of Kenya. European Journal of Agronomy, 86, 24-36. https://doi.org/10.1016/j.eja.2017.02.005.

Negi, A. S., Sharma, N., Pant, R., & Singh, M. F. (2012). Determination of total phenolic content of the stem bark of bauhinia variegata Linn.; an approach to standardization. The Pharma Research, 7(2), 16-22.

Nguyen-Sy, T., Do, H. H., Tran, Y. A. T., Kieu, H. T., Huynh Thi Diem, U., & Tran, N.-S. (2023). Effect of rice straw and garbage enzyme addition on soil properties and plant growth of rice. SAINS TANAH - Journal of Soil Science and Agroclimatology, 20(1), 6. https://doi.org/10.20961/stjssa.v20i1.65267.

Patoine, G., Bruelheide, H., Haase, J., Nock, C., Ohlmann, N., Schwarz, B., . . . Eisenhauer, N. (2020). Tree litter functional diversity and nitrogen concentration enhance litter decomposition via changes in earthworm communities. Ecology and Evolution, 10(13), 6752-6768. https://doi.org/10.1002/ece3.6474.

Policastro, G., & Cesaro, A. (2023). Composting of Organic Solid Waste of Municipal Origin: The Role of Research in Enhancing Its Sustainability. International Journal of Environmental Research and Public Health, 20(1), 312. https://doi.org/10.3390/ijerph20010312.

Quilichini, T. D., Gao, P., Yu, B., Bing, D., Datla, R., Fobert, P., & Xiang, D. (2022). The Seed Coat’s Impact on Crop Performance in Pea (Pisum sativum L.). Plants, 11(15), 2056. https://doi.org/10.3390/plants11152056.

Rahmonov, O., Majgier, L., & Rahmonov, M. (2023). Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries. Soil Systems, 7(1), 18. https://doi.org/10.3390/soilsystems7010018.

Rakhmad, F., Suwardi, & Dyah, T. S. (2019). Release pattern of ammonium, nitrate, and potassium from Slow-Release Fertilizer (SRF) in the Soil. IOP Conference Series: Earth and Environmental Science, 383(1), 012037. https://doi.org/10.1088/1755-1315/383/1/012037.

Recena, R., Torrent, J., del Campillo, M. C., & Delgado, A. (2015). Accuracy of Olsen P to assess plant P uptake in relation to soil properties and P forms. Agronomy for Sustainable Development, 35(4), 1571-1579. https://doi.org/10.1007/s13593-015-0332-z.

Sakiah, Saragih, D. A., Sukariawan, A., Guntoro, & Bakti, A. S. (2021). The quality of compost made from mixture of Mucuna bracteata and oil palm empty fruit bunch. IOP Conference Series: Earth and Environmental Science, 762(1), 012082. https://doi.org/10.1088/1755-1315/762/1/012082.

Santonja, M., Fernandez, C., Proffit, M., Gers, C., Gauquelin, T., Reiter, I. M., . . . Baldy, V. (2017). Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. Journal of Ecology, 105(3), 801-815. https://doi.org/10.1111/1365-2745.12711.

Santrum, M. J., Tokan, M. K., & Imakulata, M. M. (2021). Estimasi indeks luas daun dan fotosintesis bersih kanopi hutan mangrove di Pantai Salupu Kecamatan Kupang Barat Kabupaten Kupang. Haumeni Journal of Education, 1(2), 38-43. https://ejurnal.undana.ac.id/index.php/haumeni/article/view/5402.

Savci, S. (2012). Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia, 1, 287-292. https://doi.org/10.1016/j.apcbee.2012.03.047.

Schütt, M., Borken, W., Spott, O., Stange, C. F., & Matzner, E. (2014). Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biology and Biochemistry, 69, 320-327. https://doi.org/10.1016/j.soilbio.2013.11.014.

Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: a review. International journal of agriculture, environment and biotechnology, 10(6), 675-680. https://doi.org/10.5958/2230-732X.2017.00083.3.

Sholihah, A., Prijono, S., Utami, S. R., & Handayanto, E. (2012). N mineralization from residues of crops grown with varying supply of 15N concentrations. Journal of Agricultural Science, 4(8), 117-123. https://doi.org/10.5539/jas.v4n8p117.

Sholihah, A., & Sugianto, A. (2015). Effect of Addition of New Crop Residues on Recovery of 15n Previously Added Residues by Maize. Journal of Agriculture and Environmental Sciences, 4(1), 21-25. https://doi.org/10.15640/jaes.v4n1a3.

Sholihah, A., & Sugianto, A. (2022). The use of soybean and rice straw harvest waste for increasing P uptake and organic maize production in inceptisols. IOP Conference Series: Earth and Environmental Science, 1107(1), 012057. https://doi.org/10.1088/1755-1315/1107/1/012057.

Soil Survey Staff. (2022). Keys to soil taxonomy. USDA Natural Resources Conservation Service. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf

Spohn, M., & Kuzyakov, Y. (2013). Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology and Biochemistry, 61, 69-75. https://doi.org/10.1016/j.soilbio.2013.02.013.

Stallings, A. M., Balkcom, K. S., Wood, C. W., Guertal, E. A., & Weaver, D. B. (2017). Nitrogen mineralization from ‘AU Golden' sunn hemp residue. Journal of Plant Nutrition, 40(1), 50-62. https://doi.org/10.1080/01904167.2016.1193613.

Su, B., Zhang, H., Zhang, Y., Shao, S., Mouazen, A. M., Jiao, H., . . . Gao, C. (2023). Soil C:N:P Stoichiometry Succession and Land Use Effect after Intensive Reclamation: A Case Study on the Yangtze River Floodplain. Agronomy, 13(4), 1133. https://doi.org/10.3390/agronomy13041133.

Sun, H., Zhou, S., Zhang, J., Zhang, X., & Wang, C. (2020). Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. Field Crops Research, 253, 107814. https://doi.org/10.1016/j.fcr.2020.107814.

Talbot, J. M., & Treseder, K. K. (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology, 93(2), 345-354. https://doi.org/10.1890/11-0843.1.

Tortosa, G., Mesa, S., Delgado, M. J., & Amaya-Gómez, C. V. (2023). "Alperujo" Compost Improves Nodulation and Symbiotic Nitrogen Fixation of Soybean Inoculated with Bradyrhizobium diazoefficiens. Nitrogen, 4(2), 223-230. https://doi.org/10.3390/nitrogen4020015.

Tripolskaja, L., Kazlauskaite-Jadzevice, A., & Razukas, A. (2023). Organic Carbon, Nitrogen Accumulation and Nitrogen Leaching as Affected by Legume Crop Residues on Sandy Loam in the Eastern Baltic Region. Plants, 12(13), 2478. https://doi.org/10.3390/plants12132478.

Walker, K. R., Stojowski, L., & Clifford, R. H. (2001). Total Nitrogen Analysis : A New Perspective on TOC. https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/13569/totalnit.pdf

Wang, J., Zhu, B., Zhang, J., Müller, C., & Cai, Z. (2015). Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biology and Biochemistry, 91, 222-231. https://doi.org/10.1016/j.soilbio.2015.08.039.

Wang, Y., Tang, C., Wu, J., Liu, X., & Xu, J. (2013). Impact of organic matter addition on pH change of paddy soils. Journal of Soils and Sediments, 13(1), 12-23. https://doi.org/10.1007/s11368-012-0578-x.

Wang, Y., Zhu, Y., Zhang, S., & Wang, Y. (2018). What could promote farmers to replace chemical fertilizers with organic fertilizers? Journal of Cleaner Production, 199, 882-890. https://doi.org/10.1016/j.jclepro.2018.07.222.

Xie, W.-Y., Yuan, S.-T., Xu, M.-G., Yang, X.-P., Shen, Q.-R., Zhang, W.-W., . . . Zhao, F.-J. (2018). Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biology and Biochemistry, 122, 111-119. https://doi.org/10.1016/j.soilbio.2018.04.009.

Xu, P., Liu, Y., Zhu, J., Shi, L., Fu, Q., Chen, J., . . . Huang, Q. (2020). Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol. Soil and Tillage Research, 201, 104594. https://doi.org/10.1016/j.still.2020.104594.

Yang, D., Wang, Y., & Wu, Q. (2023). Impact of Tillage and Straw Management on Soil Properties and Rice Yield in a Rice-Ratoon Rice System. Agronomy, 13(7), 1762. https://doi.org/10.3390/agronomy13071762.

Zhang, X., Wang, Z., Wu, F., & Zhou, X. (2022). The Influence of Residue Mixing on the Decomposition of Pepper Root Residues. Agriculture, 12(1), 84. https://doi.org/10.3390/agriculture12010084.

Zhou, G., Cao, W., Bai, J., Xu, C., Zeng, N., Gao, S., . . . Dou, F. (2020). Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen (N) and reduce carbon and N losses: An incubation study. Pedosphere, 30(5), 661-670. https://doi.org/10.1016/S1002-0160(19)60845-3.

Zhou, Z., Li, J., Li, C., Guo, Q., Hou, X., Zhao, C., . . . Wang, Q. (2023). Effects of Graphene Oxide on the Growth and Photosynthesis of the Emergent Plant Iris pseudacorus. Plants, 12(9), 1738. https://doi.org/10.3390/plants12091738.

Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M. K., & Cheng, W. (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology and Biochemistry, 76, 183-192. https://doi.org/10.1016/j.soilbio.2014.04.033.

Refbacks

  • There are currently no refbacks.