Assessing soil fertility index under different forest land cover
Abstract
Soil fertility is often evaluated under various forest land cover types to determine the capacity of each area to support plant productivity. Therefore, this study aimed to (1) assess the current soil fertility status of six land cover types in the Alas Bromo educational forest of Universitas Sebelas Maret using the Soil Fertility Index method and (2) identify the factors influencing the status. The six different land cover types investigated in this descriptive-exploratory study using a survey method included (1) pine, (2) pine-mahogany, (3) mahogany, (4) mixed trees, (5) annual crops, and (6) pine replanting, with four repetitions. Furthermore, the composite soil sample represented each repetitive area, and the assessment results showed that the soil fertility status was categorized as low to moderate. The categorization order was mahogany>mixed trees>pine replanting>annual crops>pine>pine-mahogany which had fertility indices of 0.57, 0.56, 0.53, 0.51, 0.49, and 0.45, respectively. Soil fertility determinants across the six land cover types comprised litterfall, breast height diameter, and tree density. Future investigations should evaluate the relationship between litter quality, soil biota, and decomposition rate with fertility to identify the appropriate strategy for fertility enhancement on each land cover.
Keywords
Full Text:
PDFReferences
Adekiya, A. O., Aremu, C., Agbede, T. M., Olayanju, A., Ejue, W. S., Adegbite, K. A., . . . Oni, A. T. (2021). Soil productivity improvement under different fallow types on Alfisol of a derived savanna ecology of Nigeria. Heliyon, 7(4), e06759. https://doi.org/10.1016/j.heliyon.2021.e06759
Ahuchaogu, I., Udoumoh, U., & Ehiomogue, P. (2022). Soil and Water Conservation Practices in Nigeria: A Review. International Journal of Agriculture and Earth Science, 8(1), 25-39. https://www.iiardjournals.org/get/IJAES/VOL.%208%20NO.%201%202022/SOIL%20AND%20WATER%20CONSERVATION.pdf
Appiah-Badu, K., Anning, A. K., Eshun, B., & Mensah, G. (2022). Land use effects on tree species diversity and soil properties of the Awudua Forest, Ghana. Global Ecology and Conservation, 34, e02051. https://doi.org/10.1016/j.gecco.2022.e02051
Apriyanto, E., Hidayat, F., Nugroho, P. B., & Tarigan, I. (2021). Litterfall Production and Decomposition in Three Types of Land Use in Bengkulu Protection Forest. 2021, 9(1), 7. https://doi.org/10.18196/pt.v9i1.4019
Ariyanto, D. P., Qudsi, Z. A., Sumani, Dewi, W. S., Rahayu, & Komariah. (2021). The dynamic effect of air temperature and air humidity toward soil temperature in various lands cover at KHDTK Gunung Bromo, Karanganyar - Indonesia. IOP Conference Series: Earth and Environmental Science, 724(1), 012003. https://doi.org/10.1088/1755-1315/724/1/012003
Arora, S., Bhatt, R., Sharma, V., & Hadda, M. S. (2023). Indigenous Practices of Soil and Water Conservation for Sustainable Hill Agriculture and Improving Livelihood Security. Environmental Management, 72(2), 321-332. https://doi.org/10.1007/s00267-022-01602-1
Awopegba, M., Oladele, S., & Awodun, M. (2017). Effect of mulch types on nutrient composition, maize (Zea mays L.) yield and soil properties of a tropical Alfisol in Southwestern Nigeria [Effect of mulch types on nutrient composition, maize (Zea mays L.) yield and soil properties of a tropical Alfisol in Southwestern Nigeria]. Eurasian Journal of Soil Science, 6(2), 121-133. https://doi.org/10.18393/ejss.286546
Bagherzadeh, A., Gholizadeh, A., & Keshavarzi, A. (2018). Assessment of soil fertility index for potato production using integrated Fuzzy and AHP approaches, Northeast of Iran. Eurasian Journal of Soil Science, 7(3), 203-212. https://doi.org/10.18393/ejss.399775
Bahru, T., & Ding, Y. (2020). Effect of stand density, canopy leaf area index and growth variables on Dendrocalamus brandisii (Munro) Kurz litter production at Simao District of Yunnan Province, southwestern China. Global Ecology and Conservation, 23, e01051. https://doi.org/10.1016/j.gecco.2020.e01051
Callesen, I., Clarke, N., Lazdinš, A., Varnagiryte-Kabasinskiene, I., & Raulund-Rasmussen, K. (2019). Nutrient release capability in Nordic and Baltic forest soils determined by dilute nitric acid extraction – Relationships with indicators for soil quality, pH and sustainable forest management. Ecological Indicators, 96, 540-547. https://doi.org/10.1016/j.ecolind.2018.09.027
Carnol, M., & Bazgir, M. (2013). Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce. Forest Ecology and Management, 309, 66-75. https://doi.org/10.1016/j.foreco.2013.04.008
Chase, P., & Singh, O. (2014). Soil nutrients and fertility in three traditional land use systems of Khonoma, Nagaland, India. Resources and Environment, 4(4), 181-189. http://article.sapub.org/10.5923.j.re.20140404.01.html
Chen, S., Lin, B., Li, Y., & Zhou, S. (2020). Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma, 357, 113937. https://doi.org/10.1016/j.geoderma.2019.113937
Darmawan, A. A., Ariyanto, D. P., Basuki, T. M., Syamsiyah, J., & Dewi, W. S. (2022). Biomass accumulation and carbon sequestration potential in varying tree species, ages and densities in Gunung Bromo Education Forest, Central Java, Indonesia. Biodiversitas Journal of Biological Diversity, 23(10). https://doi.org/10.13057/biodiv/d231016
Dewi, W. S., Nugroho, M. A., Maulana, M. A. D., Purwanto, Ariyanto, D. P., & Indrayatie, E. R. (2023). The Assessment of Soil Quality and Earthworms as Bioindicators in the Alas Bromo Education Forest, Central Java, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 13(2), 452-461. https://doi.org/10.18517/ijaseit.13.2.18398
Dewi, W. S., Prasidina, S. D. C., Amalina, D. D., & Wongsoatmojo, S. (2021). The density and diversity of Arbuscular mycorrhizal spores on land covers with different tree canopy densities at the UNS educational forests. IOP Conference Series: Earth and Environmental Science, 824(1), 012021. https://doi.org/10.1088/1755-1315/824/1/012021
Dewi, W. S., Puspaningrum, A., Tinuntun, R. S., Suntoro, S., & Mujiyo, M. (2022). A modified soil fertility assessment method using earthworm density and microbial biomass C at various land uses in Wonogiri, Indonesia. International Journal of Design & Nature and Ecodynamics, 17(6), 929-936. https://doi.org/10.18280/ijdne.170614
Dewi, W. S., Widijanto, H., & Nofiantoro, S. (2018). The potential of pineapple rotations to improve chemical properties of Ultisols. Bulgarian Journal of Agricultural Science, 24(1). https://journal.agrojournal.org/page/en/details.php?article_id=980
Dobermann, A., & Oberthür, T. (1997). Fuzzy mapping of soil fertility — a case study on irrigated riceland in the Philippines. Geoderma, 77(2), 317-339. https://doi.org/10.1016/S0016-7061(97)00028-1
Drupadi, T. A., Ariyanto, D. P., & Sudadi. (2021). Pendugaan Kadar Biomassa dan Karbon Tersimpan pada Berbagai Kemiringan dan Tutupan Lahan di KHDTK Gunung Bromo UNS. Jurnal Agrikultura, 32(2), 112-119. https://doi.org/10.24198/agrikultura.v32i2.32344
Dutta, J., Sharma, S. P., Sharma, S. K., Sharma, G. D., & Sankhyan, N. K. (2015). Indexing Soil Quality under Long-Term Maize-Wheat Cropping System in an Acidic Alfisol. Communications in Soil Science and Plant Analysis, 46(15), 1841-1862. https://doi.org/10.1080/00103624.2015.1047845
Gautam, A., Guzman, J., Kovacs, P., & Kumar, S. (2022). Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Archives of Agronomy and Soil Science, 68(9), 1261-1273. https://doi.org/10.1080/03650340.2021.1887480
Gillman, G. P., & Uehara, G. (1980). Charge Characteristics of Soils with Variable and Permanent Charge Minerals: II. Experimental. Soil Science Society of America Journal, 44(2), 252-255. https://doi.org/10.2136/sssaj1980.03615995004400020009x
Hansson, K., Laclau, J.-P., Saint-André, L., Mareschal, L., van der Heijden, G., Nys, C., . . . Legout, A. (2020). Chemical fertility of forest ecosystems. Part 1: Common soil chemical analyses were poor predictors of stand productivity across a wide range of acidic forest soils. Forest Ecology and Management, 461, 117843. https://doi.org/10.1016/j.foreco.2019.117843
Ibáñez, I., Acharya, K., Juno, E., Karounos, C., Lee, B. R., McCollum, C., . . . Tourville, J. (2019). Forest resilience under global environmental change: Do we have the information we need? A systematic review. PLOS ONE, 14(9), e0222207. https://doi.org/10.1371/journal.pone.0222207
Jamaluddin, A. S., Abdu, A., Abdul-Hamid, H., Akbar, M. H., Banga, T. S., Jusop, S., & Majid, N. M. (2013). Assessing Soil Fertility Status of Rehabilitated Degraded Tropical Rainforest. American Journal of Environmental Sciences, 9(3). https://doi.org/10.3844/ajessp.2013.280.291
Khadka, D., Lamichhane, S., Bhurer, K. P., Chaudhary, J. N., Ali, M. F., & Lakhe, L. (2018). Soil Fertility Assessment and Mapping of Regional Agricultural Research Station, Parwanipur, Bara, Nepal. Journal of Nepal Agricultural Research Council, 4(1), 33-47. https://doi.org/10.3126/jnarc.v4i1.19688
Lu, D., Moran, E., & Mausel, P. (2002). Linking Amazonian secondary succession forest growth to soil properties. Land Degradation & Development, 13(4), 331-343. https://doi.org/10.1002/ldr.516
Lukina, N. V., Tikhonova, E. V., Danilova, M. A., Bakhmet, O. N., Kryshen, A. M., Tebenkova, D. N., . . . Zukert, N. V. (2019). Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia. Forest Ecosystems, 6(1), 34. https://doi.org/10.1186/s40663-019-0190-2
Marchi, E., Chung, W., Visser, R., Abbas, D., Nordfjell, T., Mederski, P. S., . . . Laschi, A. (2018). Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Science of The Total Environment, 634, 1385-1397. https://doi.org/10.1016/j.scitotenv.2018.04.084
Moran, E. F., Brondizio, E. S., Tucker, J. M., da Silva-Forsberg, M. C., McCracken, S., & Falesi, I. (2000). Effects of soil fertility and land-use on forest succession in Amazônia. Forest Ecology and Management, 139(1), 93-108. https://doi.org/10.1016/S0378-1127(99)00337-0
Mugi-Ngenga, E., Bastiaans, L., Zingore, S., Anten, N. P. R., & Giller, K. E. (2022). The role of nitrogen fixation and crop N dynamics on performance and legacy effects of maize-grain legumes intercrops on smallholder farms in Tanzania. European Journal of Agronomy, 141, 126617. https://doi.org/10.1016/j.eja.2022.126617
Mukashema, A. (2007). Mapping and Modelling Landscape-based Soil Fertility Change in Relation to Human Induction [Master thesis, International Institute for Geo-information Science and Earth Observation]. https://webapps.itc.utwente.nl/librarywww/papers_2007/msc/nrm/mukashema.pdf
Mulat, Y., Kibret, K., Bedadi, B., & Mohammed, M. (2021). Soil quality evaluation under different land use types in Kersa sub-watershed, eastern Ethiopia. Environmental Systems Research, 10(1), 19. https://doi.org/10.1186/s40068-021-00224-6
Munawar, A. (2018). Kesuburan tanah dan nutrisi tanaman. PT Penerbit IPB Press.
Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019(1), 5794869. https://doi.org/10.1155/2019/5794869
Nguemezi, C., Tematio, P., Yemefack, M., Tsozue, D., & Silatsa, T. B. F. (2020). Soil quality and soil fertility status in major soil groups at the Tombel area, South-West Cameroon. Heliyon, 6(2), e03432. https://doi.org/10.1016/j.heliyon.2020.e03432
Nufus, M., Pertiwi, Y. A. B., & Sakya, A. T. (2020). Vegetation analysis and tree species diversity in KHDTK Gunung Bromo, Karanganyar, Central Java. IOP Conference Series: Earth and Environmental Science, 528(1), 012010. https://doi.org/10.1088/1755-1315/528/1/012010
Nugroho, A. F., Ichwandi, I., & Kosmaryandi, N. (2017). Analisis pengelolaan kawasan hutan dengan tujuan khusus (Studi Kasus Hutan Pendidikan dan Latihan Gunung Walat). Journal of Environmental Engineering and Waste Management, 2(2), 51-59. https://e-journal.president.ac.id/presunivojs/index.php/JENV/article/viewFile/219/116
Nurfansyah, E., Hendrayana, Y., & Adhya, I. (2019). Potensi karbon tersimpan pada tegakan pinus (Pinus merkusii) di Blok Pasir Batang Kawasan Taman Nasional Gunung Ciremai. Wanaraksa, 13(1). https://doi.org/10.25134/wanaraksa.v13i01.4649
Olivares-Campos, B. O., & López-Beltrán, M. A. (2019). Normalized Difference Vegetation Index (NDVI) applied to the agricultural indigenous territory of Kashaama , Venezuela [Índice de Vegetación de Diferencia Normalizada aplicado al territorio indígena agrícola de Kashaama, Venezuela]. Cuadernos de Investigación UNED, 11(2), 112-121. https://doi.org/10.22458/urj.v11i2.2299
Olivares-Campos, B. O., López-Beltrán, M. A., & Lobo-Luján, D. (2019). Changes in land use and vegetation in the agrarian community Kashaama, Anzoátegui, Venezuela: 2001-2013 [Cambios de usos de suelo y vegetación en la comunidad agraria Kashaama, Anzoátegui, Venezuela: 2001-2013]. Revista Geográfica De América Central, 63(2), 224-246. https://doi.org/10.15359/rgac.63-2.10
Pei, G., Liu, J., Peng, B., Gao, D., Wang, C., Dai, W., . . . Bai, E. (2019). Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. Forest Ecology and Management, 440, 61-69. https://doi.org/10.1016/j.foreco.2019.03.001
Pertiwi, R. A. P., Sugiyarto, S., Budiharjo, A., & Nayasilana, I. N. (2020). Diversity of Butterflies (Lepidoptera) in Mount Bromo Forest Area with Special Purpose (FASP), Karanganyar, Central Jawa. Zoo Indonesia, 29(2), 166-176. https://biologyjournal.brin.go.id/index.php/zoo_indonesia/article/view/3993
Perumal, M., Wasli, M. E., Ying, H. S., Lat, J., & Sani, H. (2017). Association between Soil Fertility and Growth Performance of Planted Shorea macrophylla (de Vriese) after Enrichment Planting at Rehabilitation Sites of Sampadi Forest Reserve, Sarawak, Malaysia. International Journal of Forestry Research, 2017(1), 6721354. https://doi.org/10.1155/2017/6721354
Sachan, H., & Krishna, D. (2022). Assessment of soil fertility status using nutrient index approach in cassava farms of rewa province, Fiji. Indian Journal of Agricultural Research, 56(5), 594-598. https://doi.org/10.18805/IJARe.AF-680
Sari, R. R., Rozendaal, D. M. A., Saputra, D. D., Hairiah, K., Roshetko, J. M., & van Noordwijk, M. (2022). Balancing litterfall and decomposition in cacao agroforestry systems. Plant and Soil, 473(1), 251-271. https://doi.org/10.1007/s11104-021-05279-z
Sasongko, P. E., Purwanto, P., Dewi, W. S., & Hidayat, R. (2022). Assessment of soil fertility using the soil fertility index method on several land uses in Tutur District, Pasuruan Regency of East Java. Journal of Degraded and Mining Lands Management, 10(1), 3787-3794. https://doi.org/10.15243/jdmlm.2022.101.3787
Shen, Y., Li, J., Chen, F., Cheng, R., Xiao, W., Wu, L., & Zeng, L. (2022). Correlations between forest soil quality and aboveground vegetation characteristics in Hunan Province, China [Original Research]. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1009109
Singh, G., Sharma, M., Manan, J., & Singh, G. (2016). Assessment of soil fertility status under different cropping sequences in District Kapurthala. Journal of Krishi Vigyan, 5(1), 1-9. https://doi.org/10.5958/2349-4433.2016.00023.4
Sugiyarto, Nayasilana, I. N., & Aditya. (2020). The suburban forest as a habitat of eagles (Accipitridae): a case study in Gunung Bromo University Forest, Karanganyar, Central Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 590(1), 012007. https://doi.org/10.1088/1755-1315/590/1/012007
Sulaeman, Suparto, & Eviati. (2021). Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, Dan Pupuk (B. H. Prasetyo, D. Santoso, & L. R. Widowati, Eds.). Balai Penelitian Tanah, Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian.
Supriyadi, S., Ustiatik, R., Mukti, B., Minardi, S., Widijanto, H., & Sakti, M. B. G. (2022). Soil quality status under Hazton’s paddy farming: A case study in Banyumas Regency, Indonesia. SAINS TANAH - Journal of Soil Science and Agroclimatology, 19(2), 123-131. https://doi.org/10.20961/stjssa.v19i2.58375
Thapa, M. S., Bhattarai, T., Sharma, R. P., K. C, B., & Puri, L. (2019). Analytical Study on Fertility Status and Soil Quality Index of Shorearobusta Forest, Central Nepal. Tribhuvan University Journal, 33(2), 1-14. https://doi.org/10.3126/tuj.v33i2.33560
Tongka, G. N. T. N., Wardah, W., & Yusran, Y. (2019). Kondisi kimia tanah di bawah tegakan pinus (Pinus merkusii jungh. Et de vriese) dan padang rumput Desa Watutau Kecamatan Lore Peore Kabupaten Poso Sulawesi Tengah. ForestSains, 16(2), 69-76. https://interoperabilitas.perpusnas.go.id/record/detail/573109/kondisi-kimia-tanah-di-bawah-tegakan-pinus-pinus-merkusii-jungh-et-de-vriese-dan-padang-rumput-desa-watutau-kecamatan-lore-peore-kabupaten-poso-sulawesi-tengah
Vergílio, M., Fjøsne, K., Nistora, A., & Calado, H. (2016). Carbon stocks and biodiversity conservation on a small island: Pico (the Azores, Portugal). Land Use Policy, 58, 196-207. https://doi.org/10.1016/j.landusepol.2016.07.020
Wang, Q., Wang, S., & Yu, X. (2011). Decline of soil fertility during forest conversion of secondary forest to Chinese fir plantations in subtropical China. Land Degradation & Development, 22(4), 444-452. https://doi.org/10.1002/ldr.1030
Wicaksono, R. L., Rahmadwiati, R., & Apriyanto, D. (2020). Interaksi dan Ketergantungan Masyarakat Sekitar terhadap Kawasan Hutan dengan Tujuan Khusus (KHDTK) Gunung Bromo. Jurnal Belantara, 3(1), 1-11. https://doi.org/10.29303/jbl.v3i1.421
Xie, L. W., Zhong, J., Chen, F. F., Cao, F. X., Li, J. J., & Wu, L. C. (2015). Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis. Solid Earth, 6(2), 515-524. https://doi.org/10.5194/se-6-515-2015
Yang, X., Wang, Y., Xu, Q., Liu, W., Liu, L., Wu, Y., . . . Lu, J. (2021). Soil fertility underlies the positive relationship between island area and litter decomposition in a fragmented subtropical forest landscape. CATENA, 204, 105414. https://doi.org/10.1016/j.catena.2021.105414
Zake, J., Pietsch, S. A., Friedel, J. K., & Zechmeister-Boltenstern, S. (2015). Can agroforestry improve soil fertility and carbon storage in smallholder banana farming systems? Journal of Plant Nutrition and Soil Science, 178(2), 237-249. https://doi.org/10.1002/jpln.201400281
Zhang, Y., He, X., Liang, H., Zhao, J., Zhang, Y., Xu, C., & Shi, X. (2016). Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research, 23(6), 5442-5450. https://doi.org/10.1007/s11356-015-5673-2
Zhu, X., Liu, W., Chen, H., Deng, Y., Chen, C., & Zeng, H. (2019). Effects of forest transition on litterfall, standing litter and related nutrient returns: Implications for forest management in tropical China. Geoderma, 333, 123-134. https://doi.org/10.1016/j.geoderma.2018.07.023
Refbacks
- There are currently no refbacks.