Effect of Glomus manihotis inoculation and salt stress on antioxidant and biochemical properties of Chia (Salvia hispanica L.)
Abstract
Plant productivity is often constrained by abiotic stress in the form of high salt levels. However, a symbiosis between plant and arbuscular mycorrhizal fungi can reduce the severity of the effect of salt stress on cultivated plants. The aim of this study was to determine the impact of salt stress on the antioxidant substances and biochemical parameters of chia (Salvia hispanica L.) plants that had been inoculated with the fungus Glomus manihotis. A factorial completely randomized design with seven replicates was used with status of inoculation by the fungus G. manihotis (inoculated vs. not inoculated) as one of factors and the concentration of sodium chloride (NaCl) (0, 50, 100, and 200 mM) as the other status factor. Several parameters in the chia plants were measured including: root infection, phosphorus content, chlorophyll and carotenoid contents, antioxidant enzyme activities (superoxide dismutase and catalase), and malondialdehyde content. The results showed that chia plants inoculated with G. manihotis (mycorrhizal plants), even under salt stress conditions, had higher phosphorus content than non-mycorrhizal plants. High salt levels reduced the percentage of root infection by the mycorrhizal fungus of G. manihotis. Under salt stress conditions, chlorophyll and carotenoid contents of chia leaves were higher in mycorrhizal plants than in non-mycorrhizal plants. The activities of superoxide dismutase and catalase of mycorrhizal chia plants were higher than those of non-mycorrhizal plants, even though they were grown under conditions of high salt levels. The malondialdehyde content of chia plants increased with salt concentration, but decreased in chia plants inoculated with G. manihotis. The findings of this study indicate that G. manihotis inoculation is effective in reducing the effect of salt stress on chia plants.
Keywords
Full Text:
PDFReferences
Abdelaziz, M. E., Abdelsattar, M., Abdeldaym, E. A., Atia, M. A. M., Mahmoud, A. W. M., Saad, M. M., & Hirt, H. (2019). Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Scientia Horticulturae, 256, 108532. https://doi.org/10.1016/j.scienta.2019.05.059
Aguilar-Toalá, J. E., Deering, A. J., & Liceaga, A. M. (2020). New Insights into the Antimicrobial Properties of Hydrolysates and Peptide Fractions Derived from Chia Seed (Salvia hispanica L.). Probiotics and Antimicrobial Proteins, 12(4), 1571-1581. https://doi.org/10.1007/s12602-020-09653-8
Ait-El-Mokhtar, M., Baslam, M., Ben-Laouane, R., Anli, M., Boutasknit, A., Mitsui, T., . . . Meddich, A. (2020). Alleviation of Detrimental Effects of Salt Stress on Date Palm (Phoenix dactylifera L.) by the Application of Arbuscular Mycorrhizal Fungi and/or Compost [Original Research]. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.00131
Álvarez-Robles, M. J., Bernal, M. P., Sánchez-Guerrero, A., Sevilla, F., & Clemente, R. (2020). Major As species, lipid peroxidation and protein carbonylation in rice plants exposed to increasing As(V) concentrations. Heliyon, 6(8), e04703. https://doi.org/10.1016/j.heliyon.2020.e04703
Borde, M., Dudhane, M., & Kulkarni, M. (2017). Role of Arbuscular Mycorrhizal Fungi (AMF) in Salinity Tolerance and Growth Response in Plants Under Salt Stress Conditions. In A. Varma, R. Prasad, & N. Tuteja (Eds.), Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials (pp. 71-86). Springer International Publishing. https://doi.org/10.1007/978-3-319-57849-1_5
Cen, H., Wang, T., Liu, H., Tian, D., & Zhang, Y. (2020). Melatonin Application Improves Salt Tolerance of Alfalfa (Medicago sativa L.) by Enhancing Antioxidant Capacity. Plants, 9(2), 220. https://doi.org/10.3390/plants9020220
Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity, 12(10), 370. https://doi.org/10.3390/d12100370
Diao, F., Dang, Z., Xu, J., Ding, S., Hao, B., Zhang, Z., . . . Guo, W. (2021). Effect of arbuscular mycorrhizal symbiosis on ion homeostasis and salt tolerance-related gene expression in halophyte Suaeda salsa under salt treatments. Microbiological Research, 245, 126688. https://doi.org/10.1016/j.micres.2020.126688
Ebrahim, M. K. H., & Saleem, A.-R. (2017). Alleviating salt stress in tomato inoculated with mycorrhizae: Photosynthetic performance and enzymatic antioxidants. Journal of Taibah University for Science, 11(6), 850-860. https://doi.org/10.1016/j.jtusci.2017.02.002
Etesami, H., & Shafiei, S. (2020). Contribution of Arbuscular Mycorrhizal Symbiosis to Salinity Tolerance in Leguminous Plants. In N. Amaresan, S. Murugesan, K. Kumar, & A. Sankaranarayanan (Eds.), Microbial Mitigation of Stress Response of Food Legumes (pp. 191-208). CRC Press. https://doi.org/10.1201/9781003028413-19
Garg, N., & Bhandari, P. (2016). Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma, 253(5), 1325-1345. https://doi.org/10.1007/s00709-015-0892-4
Haque, S. I., & Matsubara, Y.-i. (2018). Salinity tolerance and sodium localization in mycorrhizal strawberry plants. Communications in Soil Science and Plant Analysis, 49(22), 2782-2792. https://doi.org/10.1080/00103624.2018.1538376
Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Aldubise, A., & Egamberdieva, D. (2015). Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interactions, 10(1), 230-242. https://doi.org/10.1080/17429145.2015.1052025
He, J.-D., Zou, Y.-N., Wu, Q.-S., & Kuča, K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 262, 108745. https://doi.org/10.1016/j.scienta.2019.108745
Heydari, S., & Pirzad, A. (2020). Mycorrhizal Fungi and Thiobacillus Co-inoculation Improve the Physiological Indices of Lallemantia iberica Under Salinity Stress. Current Microbiology, 77(9), 2523-2534. https://doi.org/10.1007/s00284-020-02034-y
Hu, S., Hu, B., Chen, Z., Vosátka, M., & Vymazal, J. (2020). Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress. Environmental Research, 191, 110203. https://doi.org/10.1016/j.envres.2020.110203
Kabir, A. H., Debnath, T., Das, U., Prity, S. A., Haque, A., Rahman, M. M., & Parvez, M. S. (2020). Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Plant Physiology and Biochemistry, 150, 254-262. https://doi.org/10.1016/j.plaphy.2020.03.010
Kazemi, R., Ronaghi, A., Yasrebi, J., Ghasemi-Fasaei, R., & Zarei, M. (2019). Effect of Shrimp Waste–Derived Biochar and Arbuscular Mycorrhizal Fungus on Yield, Antioxidant Enzymes, and Chemical Composition of Corn Under Salinity Stress. Journal of Soil Science and Plant Nutrition, 19(4), 758-770. https://doi.org/10.1007/s42729-019-00075-2
Kong, L., Gong, X., Zhang, X., Zhang, W., Sun, J., & Chen, B. (2020). Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition. Journal of Plant Nutrition, 43(5), 682-698. https://doi.org/10.1080/01904167.2019.1701029
Li, Z., Wu, N., Meng, S., Wu, F., & Liu, T. (2020). Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLOS ONE, 15(4), e0231497. https://doi.org/10.1371/journal.pone.0231497
Lotfi, R., Ghassemi-Golezani, K., & Pessarakli, M. (2020). Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatalysis and Agricultural Biotechnology, 26, 101635. https://doi.org/10.1016/j.bcab.2020.101635
Malhi, G. S., Kaur, M., Kaushik, P., Alyemeni, M. N., Alsahli, A. A., & Ahmad, P. (2021). Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi Journal of Biological Sciences, 28(2), 1465-1476. https://doi.org/10.1016/j.sjbs.2020.12.001
Mlinarić, S., Gvozdić, V., Vuković, A., Varga, M., Vlašiček, I., Cesar, V., & Begović, L. (2020). The Effect of Light on Antioxidant Properties and Metabolic Profile of Chia Microgreens. Applied Sciences, 10(17), 5731. https://doi.org/10.3390/app10175731
Noreen, S., Sultan, M., Akhter, M. S., Shah, K. H., Ummara, U., Manzoor, H., . . . Ahmad, P. (2021). Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiology and Biochemistry, 158, 244-254. https://doi.org/10.1016/j.plaphy.2020.11.007
Okur, B., & Örçen, N. (2020). Chapter 12 - Soil salinization and climate change. In M. N. V. Prasad & M. Pietrzykowski (Eds.), Climate Change and Soil Interactions (pp. 331-350). Elsevier. https://doi.org/10.1016/B978-0-12-818032-7.00012-6
Ouzounidou, G., Skiada, V., Papadopoulou, K. K., Stamatis, N., Kavvadias, V., Eleftheriadis, E., & Gaitis, F. (2015). Effects of soil pH and arbuscular mycorrhiza (AM) inoculation on growth and chemical composition of chia (Salvia hispanica L.) leaves. Brazilian Journal of Botany, 38(3), 487-495. https://doi.org/10.1007/s40415-015-0166-6
Parvin, S., Van Geel, M., Yeasmin, T., Verbruggen, E., & Honnay, O. (2020). Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 30(4), 431-444. https://doi.org/10.1007/s00572-020-00957-9
Porcel, R., Aroca, R., Azcon, R., & Ruiz-Lozano, J. M. (2016). Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza, 26(7), 673-684. https://doi.org/10.1007/s00572-016-0704-5
Qiu, Y.-J., Zhang, N.-L., Zhang, L.-L., Zhang, X.-L., Wu, A.-P., Huang, J.-Y., . . . Wang, Y.-H. (2020). Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiological and Molecular Plant Pathology, 112, 101522. https://doi.org/10.1016/j.pmpp.2020.101522
Rivero, J., Álvarez, D., Flors, V., Azcón-Aguilar, C., & Pozo, M. J. (2018). Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytologist, 220(4), 1322-1336. https://doi.org/10.1111/nph.15295
Sabouri, Z., Rangrazi, A., Amiri, M. S., Khatami, M., & Darroudi, M. (2021). Green synthesis of nickel oxide nanoparticles using Salvia hispanica L. (chia) seeds extract and studies of their photocatalytic activity and cytotoxicity effects. Bioprocess and Biosystems Engineering, 44(11), 2407-2415. https://doi.org/10.1007/s00449-021-02613-8
Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G., & El-Awadi, M. E. (2019). Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre, 44(1), 1. https://doi.org/10.1186/s42269-019-0259-7
Santander, C., Ruiz, A., García, S., Aroca, R., Cumming, J., & Cornejo, P. (2020). Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. Journal of the Science of Food and Agriculture, 100(4), 1577-1587. https://doi.org/10.1002/jsfa.10166
Shahvali, R., Shiran, B., Ravash, R., Fallahi, H., & Banović Đeri, B. (2020). Effect of symbiosis with arbuscular mycorrhizal fungi on salt stress tolerance in GF677 (peach×almond) rootstock. Scientia Horticulturae, 272, 109535. https://doi.org/10.1016/j.scienta.2020.109535
Shin, Y. K., Bhandari, S. R., Cho, M. C., & Lee, J. G. (2020). Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology, 61(3), 433-443. https://doi.org/10.1007/s13580-020-00231-z
Wang, H., Liang, L., Liu, B., Huang, D., Liu, S., Liu, R., . . . Chen, Y. (2020). Arbuscular Mycorrhizas Regulate Photosynthetic Capacity and Antioxidant Defense Systems to Mediate Salt Tolerance in Maize. Plants, 9(11), 1430. https://doi.org/10.3390/plants9111430
Wang, Y., Zhang, W., Liu, W., Ahammed, G. J., Wen, W., Guo, S., . . . Sun, J. (2021). Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC Plant Biology, 21(1), 48. https://doi.org/10.1186/s12870-020-02817-2
Younis, M. E., Rizwan, M., & Tourky, S. M. N. (2021). Assessment of early physiological and biochemical responses in chia (Salvia hispanica L.) sprouts under salt stress. Acta Physiologiae Plantarum, 43(8), 121. https://doi.org/10.1007/s11738-021-03285-3
Refbacks
- There are currently no refbacks.