Sweet potato is a strategic root crop in Oceania: A synthesis of the past research and future direction

Patrick S. Michael, Topas M. Peter


Sweet potato is an important food, industrial, and pharmaceutical crop worldwide and highly adapted to adverse ranges of agroclimatic conditions, making it one of the strategic crops under climate change. Despite the importance, sustainable crop production continues to be an issue because of the pressure put on land, the decline in soil fertility, the buildup of pests and diseases, and no standardized production practices. Production is highly mechanized in temperate regions, whereas, in the tropics, it is still a subsistence crop confined to subsistence farming systems. These issues are compounded by a lack of generically and agronomically improved genotypes adapted to wider agroecological zones with adaptive tolerance to existing and new stresses. In the recent past, significant progress has been made worldwide; however, the outcomes tend to be locality-specific, and cannot be extrapolated, needing decentralization of the current approaches. This review points out that the crop is a critical strategic crop in the Oceania region because of its ability to grow under adverse ranges of agroclimatic conditions and can produce a reasonable yield. The paper continues to emphasize the current trends in emerging modern technology that can be used to efficiently improve and enhance traits of agronomic importance and wider adaptivity. In addition, land use plans, farming systems, and cultural production practices need to be changed for sustainable production. The need for these is further strengthened by pointing out alternative strategies, e.g., using organic matter as a relatively cheap and readily available source of soil nutrients compared to inorganic fertilizers.


Climate change; Cultural practices; Food and nutritional security; Oceania; Sweet potato

Full Text:



Agili, S., Nyende, B., Ngamau, K., & Masinde, P. (2012). Selection, yield evaluation, drought tolerance indices of orange-flesh sweet potato (Ipomoea batatas Lam) hybrid clone. Journal of Nutrition and Food Sciences, 2, 2-29. https://doi.org/10.4172/2155-9600.1000138

Aipa, J., & Michael, P. S. (2018). Poultry manure application and fallow improves peanut production in a sandy soil under continuous cultivation. International Journal of Environmental and Agriculture Research, 4(2), 68-75. https://ijoear.com/assets/articles_menuscripts/file/IJOEAR-FEB-2018-8.pdf

Aipa, J., & Michael, P. S. (2019). Different land use systems improve soil fertility status of sandy soil and increase the yield of rice under rain-fed wet lowland tropical climatic conditions in Papua New Guinea. International Journal of Agricultural and Environmental Research, 5, 19-27. https://doi.org/10.5281/zenodo.2654571

Andrade, M. I., Ricardo, J., Naico, A., Alvaro, A., Makunde, G. S., Low, J., Ortiz, R., & GrÜNeberg, W. J. (2017). Release of orange-fleshed sweetpotato (Ipomoea batatas [l.] Lam.) cultivars in Mozambique through an accelerated breeding scheme. The Journal of Agricultural Science, 155(6), 919-929. https://doi.org/10.1017/S002185961600099X

Anglin, N. L., Robles, R., Rossel, G., Alagon, R., Panta, A., Jarret, R. L., Manrique, N., & Ellis, D. (2021). Genetic Identity, Diversity, and Population Structure of CIP's Sweetpotato (I. batatas) Germplasm Collection [Original Research]. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.660012

Begum, F., Haque, M. A., Alam, M. S., & Mohanta, H. C. (2015). Evaluation of sweet potato genotypes against salinity. Bangladesh Journal of Agricultural Research, 40(2), 249-257. https://doi.org/10.3329/bjar.v40i2.24562

Bourke, R. M. (2018a). Half a century of agricultural development in Papua New Guinea: a didiman reflects. Development Bulletin (Australian Development Studies Network), 80, 25-29. https://openresearch-repository.anu.edu.au/handle/1885/266865

Bourke, R. M. (2018b). Impact of climate change on agriculture in Papua New Guinea. In A. R. Quartermain (Ed.), Climate Change: Our Environment, Livelihoods and Sustainability. Climate Change Conference (pp. 35-50). University of Goroka, Papua New Guinea. https://www.researchgate.net/publication/327930392_Impact_of_climate_change_on_agriculture_in_Papua_New_Guinea

Bourke, R. M. (2019). Subsistence food production in Melanesia. In E. Hirsch & W. Rollason (Eds.), The Melanesian World (pp. 143-163). Routledge. https://doi.org/10.4324/9781315529691

Bourke, R. M. (2020). COVID-19 and food systems in Papua New Guinea. In L. Robins, S. Crimp, M. v. Wensveen, R. G. Alders, R. M. Bourke, J. Butler, M. Cosijn, F. Davila, A. Lal, J. F. McCarthy, A. McWilliam, A. S. M. Palo, N. Thomson, P. Warr, & M. Webb (Eds.), COVID-19 and food systems in the Indo-Pacific: An assessment of vulnerabilities, impacts and opportunities for action (pp. 127-164). ACIAR Technical Report No.96. Australian Centre for International Agricultural Research, Canberra.

Bourke, R. M. (2021). Food security in the Southwest Pacific. Development Bulletin, 1(8,935,000), 47. https://pacificsecurity.net/wp-content/uploads/2021/10/DB82_Part9.pdf

Butt, H., Rao, G. S., Sedeek, K., Aman, R., Kamel, R., & Mahfouz, M. (2020). Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J, 18(12), 2370-2372. https://doi.org/10.1111/pbi.13399

Chen, L., Xu, C., Du, Z., Hamaguchi, T., Sugita, T., Ichikawa, H., & Guan, L. (2013). Establishment of Agrobacterium-Mediated Transformation System in Sweet Potato (Ipomoea batatas) by Culture of Leaf Segments for Functional Analysis of ASG-1, an Apomixis-Specific Gene. Biotechnology Journal International, 3(4), 458-470. https://doi.org/10.9734/BBJ/2013/4582

Clark, C. A., Davis, J. A., Abad, J. A., Cuellar, W. J., Fuentes, S., Kreuze, J. F., Gibson, R. W., Mukasa, S. B., Tugume, A. K., Tairo, F. D., & Valkonen, J. P. T. (2012). Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. Plant Disease, 96(2), 168-185. https://doi.org/10.1094/pdis-07-11-0550

Clark, C. A., Ferrin, D. M., Smith, T. P., & Holmes, G. J. (2013). Compendium of Sweetpotato Diseases, Pests, and Disorders (2nd ed.). The American Phytopathological Society (APS). https://doi.org/10.1094/9780890544952

Diaz, F. C., Eyzaguirre, R., David, M. C., Blas Sevillano, R., Low, J. W., & Grüneberg, W. J. (2022). Genetic diversity determined by agronomic traits and SSR markers in two South American orange-fleshed sweetpotato breeding populations with potential for population hybrid breeding. Crop Science, 62(1), 83-99. https://doi.org/10.1002/csc2.20636

FAO. (2021). Sweet potato production, 2021. Food and Agriculture Organization (FAO) of the United Nations. https://ourworldindata.org/grapher/sweet-potato-production

Gibson, R. W., & Kreuze, J. F. (2015). Degeneration in sweetpotato due to viruses, virus-cleaned planting material and reversion: a review. Plant Pathology, 64(1), 1-15. https://doi.org/https://doi.org/10.1111/ppa.12273

Henz, G. P. (2017). Postharvest losses of perishables in Brazil: what do we know so far? Horticultura Brasileira, 35. https://doi.org/10.1590/S0102-053620170102

Islam, S. (2014). Nutritional and medicinal qualities of sweetpotato tops and leaves. Cooperative Extension Service, University of Arkansas Fayetteville, AR, USA. https://www.uapb.edu/sites/www/Uploads/SAFHS/FSA-6135.pdf

Isobe, S., Shirasawa, K., & Hirakawa, H. (2017). Challenges to genome sequence dissection in sweetpotato. Breed Sci, 67(1), 35-40. https://doi.org/10.1270/jsbbs.16186

Johnson, A. C., & Gurr, G. M. (2016). Invertebrate pests and diseases of sweetpotato (Ipomoea batatas): a review and identification of research priorities for smallholder production. Annals of Applied Biology, 168(3), 291-320. https://doi.org/10.1111/aab.12265

Katayama, K., Kobayashi, A., Sakai, T., Kuranouchi, T., & Kai, Y. (2017). Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan. Breed Sci, 67(1), 3-14. https://doi.org/10.1270/jsbbs.16129

Kim, S. H., Ahn, Y. O., Ahn, M. J., Lee, H. S., & Kwak, S. S. (2012). Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 74, 69-78. https://doi.org/10.1016/j.phytochem.2011.11.003

Kim, S. H., Jeong, J. C., Park, S., Bae, J. Y., Ahn, M. J., Lee, H. S., & Kwak, S. S. (2014). Down-regulation of sweetpotato lycopene β-cyclase gene enhances tolerance to abiotic stress in transgenic calli. Mol Biol Rep, 41(12), 8137-8148. https://doi.org/10.1007/s11033-014-3714-4

Kismul, H., Van den Broeck, J., & Lunde, T. M. (2014). Diet and kwashiorkor: a prospective study from rural DR Congo. PeerJ, 2, e350. https://doi.org/10.7717/peerj.350

Lu, Y., Ye, X., Guo, R., Huang, J., Wang, W., Tang, J., Tan, L., Zhu, J. K., Chu, C., & Qian, Y. (2017). Genome-wide Targeted Mutagenesis in Rice Using the CRISPR/Cas9 System. Mol Plant, 10(9), 1242-1245. https://doi.org/10.1016/j.molp.2017.06.007

Mari, M., Bautista-Baños, S., & Sivakumar, D. (2016). Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biology and Technology, 122, 70-81. https://doi.org/10.1016/j.postharvbio.2016.04.014

Mejias, J., Truong, N. M., Abad, P., Favery, B., & Quentin, M. (2019). Plant Proteins and Processes Targeted by Parasitic Nematode Effectors [Mini Review]. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00970

Michael, P. S. (2019a). A Procedure for Agrobacterium tumefaciens Mediated Genetic Transformation of Sweet Potato. Asian Journal of Advances in Agricultural Research, 11(4), 1-8. https://doi.org/10.9734/ajaar/2019/v11i430066

Michael, P. S. (2019b). Responses of Different Explants of Sweet Potato on Modified MS and LS Based Nutrient Media in vitro. Asian Journal of Advances in Agricultural Research, 11(4), 1-7. https://doi.org/10.9734/ajaar/2019/v11i430064

Michael, P. S. (2020a). Agriculture versus climate change – A narrow staple-based rural livelihood of Papua New Guinea is a threat to survival under climate change [Climate change; Population increase; Rural development; Staple-based agriculture]. 2020, 17(1), 16. https://doi.org/10.20961/stjssa.v17i1.41545

Michael, P. S. (2020b). Cogon grass biochar amendment and Panicum coloratum planting improve selected properties of sandy soil under humid lowland tropical climatic conditions. Biochar, 2(4), 489-502. https://doi.org/10.1007/s42773-020-00057-z

Michael, P. S. (2020c). Soil fertility status and sweet potato cultivation in composted mounds under humid lowland tropical climatic conditions [Ipomoea batatas; Soil organic matter; Soil physiochemical properties]. 2020, 17(2), 8. https://doi.org/10.20961/stjssa.v17i2.43426

Michael, P. S. (2021a). Positive and Negative Effects of Addition of Organic Carbon and Nitrogen for Management of Sulfuric Soil Material Acidity under General Soil Use Conditions [acidity management; organic carbon; organic nitrogen; organic matter]. 2021, 54(1), 17. https://doi.org/10.17951/pjss.2021.54.1.71-87

Michael, P. S. (2021b). Role of organic fertilizers in the management of nutrient deficiency, acidity, and toxicity in acid soils–A review. Journal of Global Agriculture and Ecology, 12(3), 19-30. https://www.ikprress.org/index.php/JOGAE/article/view/7286

Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2015). The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma, 255-256, 42-49. https://doi.org/10.1016/j.geoderma.2015.04.023

Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2016). The importance of soil carbon and nitrogen for amelioration of acid sulphate soils. Soil Use and Management, 32(1), 97-105. https://doi.org/10.1111/sum.12239

Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2017). Effects of live wetland plant macrophytes on acidification, redox potential and sulphate content in acid sulphate soils. Soil Use and Management, 33(3), 471-481. https://doi.org/10.1111/sum.12362

Michael, P. S., & Reid, R. J. (2018). Impact of common reed and complex organic matter on the chemistry of acid sulfate soils. Journal of soil science and plant nutrition, 18, 542-555. https://doi.org/10.4067/S0718-95162018005001603

Monostori, T., & Szarvas, A. (2015). A review on sweet potato with special focus on hungarian production: utilization, biology and transplant production. Review on Agriculture and Rural Development, 4(1–2), 68-81. http://acta.bibl.u-szeged.hu/76061/

Motsa, N. M., Modi, A. T., & Mabhaudhi, T. (2015). Sweet potato (Ipomoea batatas L.) as a drought tolerant and food security crop. South African Journal of Science, 111, 1-8. https://doi.org/10.17159/sajs.2015/20140252

Moulin, M. M., Rodrigues, R., Gonçalves, L. S. A., Sudré, C. P., & Pereira, M. G. (2012). A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Scientiarum. Agronomy, 34.

Mu, J., Xu, J., Wang, L., Chen, C., & Chen, P. (2021). Anti-inflammatory effects of purple sweet potato anthocyanin extract in DSS-induced colitis: modulation of commensal bacteria and attenuated bacterial intestinal infection. Food Funct, 12(22), 11503-11514. https://doi.org/10.1039/d1fo02454j

Mukherjee, A., Naskar, S. K., Rao, K. R., & Ray, R. C. (2012). Sweet Potato : Gains through Biotechnology. In Fruit, Vegetable and Cereal Science and Biotechnology. Global Science Books. http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/FVCSB_6(SI1)/FVCSB_6(SI1)30-42o.pdf

Muñoz-Rodríguez, P., Carruthers, T., Wood, J. R. I., Williams, B. R. M., Weitemier, K., Kronmiller, B., Ellis, D., Anglin, N. L., Longway, L., Harris, S. A., Rausher, M. D., Kelly, S., Liston, A., & Scotland, R. W. (2018). Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia. Current Biology, 28(8), 1246-1256.e1212. https://doi.org/10.1016/j.cub.2018.03.020

Okonya, J. S., Mwanga, R. O., Syndikus, K., & Kroschel, J. (2014). Insect pests of sweetpotato in Uganda: farmers' perceptions of their importance and control practices. Springerplus, 3, 303. https://doi.org/10.1186/2193-1801-3-303

Olivares, B., & Franco, E. (2015). Agrosocial diagnostic of the indigenous community of Kashaama: An empirical study in the state of Anzoategui, Venezuela. Revista Científica Guillermo de Ockham, 13, 87-95. https://doi.org/10.21500/22563202.1691

Olivares, B. O., Calero, J., Rey, J. C., Lobo, D., Landa, B. B., & Gómez, J. A. (2022). Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. CATENA, 208, 105718. https://doi.org/10.1016/j.catena.2021.105718

Olivares, B. O., Rey, J. C., Perichi, G., & Lobo, D. (2022). Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela. Sustainability, 14(20). https://doi.org/10.3390/su142013531

Olivares, B. O., Vega, A., Calderón, M. A. R., Montenegro-Gracia, E., Araya-Almán, M., & Marys, E. (2022). Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest. Sustainability, 14(21). https://doi.org/10.3390/su142114123

Olivares, B. O., Vega, A., Calderón, M. A. R., Rey, J. C., Lobo, D., Gómez, J. A., & Landa, B. B. (2022). Identification of Soil Properties Associated with the Incidence of Banana Wilt Using Supervised Methods. Plants, 11(15). https://doi.org/10.3390/plants11152070

Palumbo, F., Galvao, A. C., Nicoletto, C., Sambo, P., & Barcaccia, G. (2019). Diversity Analysis of Sweet Potato Genetic Resources Using Morphological and Qualitative Traits and Molecular Markers. Genes (Basel), 10(11). https://doi.org/10.3390/genes10110840

Roullier, C., Duputié, A., Wennekes, P., Benoit, L., Fernández Bringas, V. M., Rossel, G., Tay, D., McKey, D., & Lebot, V. (2013). Disentangling the Origins of Cultivated Sweet Potato (Ipomoea batatas (L.) Lam.). PLOS ONE, 8(5), e62707. https://doi.org/10.1371/journal.pone.0062707

Roullier, C., Kambouo, R., Paofa, J., McKey, D., & Lebot, V. (2013). On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity. Heredity, 110(6), 594-604. https://doi.org/10.1038/hdy.2013.14

Shao, H. H., Chen, S. D., Zhang, K., Cao, Q. H., Zhou, H., Ma, Q. Q., He, B., Yuan, X. H., Wang, Y., Chen, Y. H., & Yong, B. (2014). Isolation and expression studies of the ERD15 gene involved in drought-stressed responses. Genet Mol Res, 13(4), 10852-10862. https://doi.org/10.4238/2014.December.19.6

Singh, S., Singh, B., & Singh, A. P. (2015). Nematodes: A Threat to Sustainability of Agriculture. Procedia Environmental Sciences, 29, 215-216. https://doi.org/10.1016/j.proenv.2015.07.270

Tanaka, M., Ishiguro, K., Oki, T., & Okuno, S. (2017). Functional components in sweetpotato and their genetic improvement. Breed Sci, 67(1), 52-61. https://doi.org/10.1270/jsbbs.16125

Villordon, A., LaBonte, D., & Smith, T. (2013). Local nitrogen variability alters root architecture and influences storage root formation in the Beauregard sweet potato. Louisiana Agriculture, 56(3), 16-17.

Yan, M., Nie, H., Wang, Y., Wang, X., Jarret, R., Zhao, J., Wang, H., & Yang, J. (2022). Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. Plant Communications, 3(5), 100332. https://doi.org/10.1016/j.xplc.2022.100332

Yang, J., Moeinzadeh, M. H., Kuhl, H., Helmuth, J., Xiao, P., Liu, G., Zheng, J., Sun, Z., Fan, W., Deng, G., Wang, H., Hu, F., R Fernie, A., Timmermann, B., Zhang, P., & Vingron, M. (2016). The haplotype-resolved genome sequence of hexaploid <em>Ipomoea batatas</em> reveals its evolutionary history. bioRxiv, 064428. https://doi.org/10.1101/064428

Ye, M., Peng, Z., Tang, D., Yang, Z., Li, D., Xu, Y., Zhang, C., & Huang, S. (2018). Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 4(9), 651-654. https://doi.org/10.1038/s41477-018-0218-6

Zhan, X., Lu, Y., Zhu, J.-K., & Botella, J. R. (2021). Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 63(1), 3-33. https://doi.org/10.1111/jipb.13063

Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G., & Luo, L. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39(3), 47. https://doi.org/10.1007/s11032-019-0954-y


  • There are currently no refbacks.