Spatial distribution of status silicon availability for plant and its effect to rice yield

Budy Frasetya Taufik Qurrohman, Abraham Suriadikusumah, Benny Joy, Rija Sudirja

Abstract

Silicon (Si) is a beneficial element for rice plants. However, evaluating the Si availability status of paddy soil is rarely done. This study aimed to investigate the Si availability for plant (SiAP), spatial distribution, SiAP correlations with some soil properties and the effect of SiAP status on the rice yield. This study used a survey method to collect paddy soil and water sample. The pot experiment method was used to evaluate paddy plant response to SiAP level. Based on K-means, cluster analysis showed that soil SiAP was categorized low (< 147 mg SiO2 kg-1), moderate (147 – 224 mg SiO2 kg-1) and high (> 224 mg SiO2 kg-1). The SiAP status of the paddy soil area of 26,395 hectares (25%), 61,744 hectares (59%) and 15,952 hectares (15%) was categorized as low, moderate and high, respectively. This present study revealed that the upland area paddy soil has higher SiAP than the lowland area. Total silicon dioxide (SiO2) and clay percentage were negatively correlated with the SiAP in soils. Silicon addition to the paddy soil with SiAP status showed low to high increase in rice yield by 0.2%, 3.9% and 2.7%.

Keywords

Available Silicon; Paddy soil; Rice yield

Full Text:

PDF

References

Abidin, R. Z., Sulaiman, M. S., & Yusoff, N. (2017). Erosion risk assessment: A case study of the Langat River bank in Malaysia. International Soil and Water Conservation Research, 5(1), 26-35. https://doi.org/10.1016/j.iswcr.2017.01.002.

Beretta, A. N., Silbermann, A. V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., & García-Lamohte, A. (2014). Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e investigación agraria, 41, 263-271. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202014000200013&nrm=iso.

BPS. (2020). Jumlah Penduduk Hasil SP2020 menurut Wilayah dan Jenis Kelamin (Orang), 2020. Badan Pusat Statistik (BPS). https://www.bps.go.id/indicator/12/2131/1/jumlah-penduduk-hasil-sp2020-menurut-wilayah-dan-jenis-kelamin.html

Chirkes Johanna, D., Heredia Olga, S., & Fernández Cirelli, A. (2018). Soluble silicon in differently textured mollisols of Argentina. Geoderma Regional, 15, e00191. https://doi.org/10.1016/j.geodrs.2018.e00191.

Cornelis, J.-T., & Delvaux, B. (2016). Soil processes drive the biological silicon feedback loop [https://doi.org/10.1111/1365-2435.12704]. Functional Ecology, 30(8), 1298-1310. https://doi.org/10.1111/1365-2435.12704.

Coskun, D., Britto, D. T., Huynh, W. Q., & Kronzucker, H. J. (2016). The role of silicon in higher plants under salinity and drought stress. Frontiers in plant science, 7, 1072. https://doi.org/10.3389/fpls.2016.01072.

Darmawan, Kyuma, K., Saleh, A., Subagjo, H., Masunaga, T., & Wakatsuki, T. (2006). Effect of long-term intensive rice cultivation on the available silica content of sawah soils: Java Island, Indonesia. Soil Science and Plant Nutrition, 52(6), 745-753. https://doi.org/10.1111/j.1747-0765.2006.00089.x.

Debona, D., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon's Role in Abiotic and Biotic Plant Stresses. Annual Review of Phytopathology, 55(1), 85-107. https://doi.org/10.1146/annurev-phyto-080516-035312.

Etesami, H., & Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881-896. https://doi.org/10.1016/j.ecoenv.2017.09.063.

Frasetya, B., Harisman, K., Sudrajat, D., & Subandi, M. (2019). Utilization of rice husk silicate extract to improve the productivity of paddy Ciherang cultivar. Bulgarian Journal of Agricultural Science, 25(3), 499-505. https://www.agrojournal.org/25/03-11.html.

Harjanti, L. T., & Hara, Y. (2020). The Determinants of Paddy Fields Conversion in Java and Sumatra. Jurnal Ekonomi & Kebijakan Publik, 11(1), 39-52. https://doi.org/10.22212/jekp.v11i1.1492.

Husnain, Rochayati, S., & Adamy, I. (2012). Pengelolaan Hara Silika pada Tanah Pertanian di Indonesia. Prosiding Seminar Nasional Teknologi Pemupukan Dan Pemulihan Lahan Terdegradasi,

Husnain, Wakatsuki, T., Setyorini, D., Hermansah, Sato, K., & Masunaga, T. (2008). Silica availability in soils and river water in two watersheds on Java Island, Indonesia. Soil Science & Plant Nutrition, 54(6), 916-927. https://doi.org/10.1111/j.1747-0765.2008.00313.x.

Husnain, Widowati, L. R., Las, I., Sarwani, M., Rochayati, S., Setyorini, D., . . . Susilawati. (2020). Rekomendasi Pupuk N, P, dan K Spesifik Lokasi untuk Tanaman Padi, Jagung dan Kedelai pada Lahan Sawah (Per Kecamatan) (F. F. Agung, A. P. Saputra, & T. P. Wijaya, Eds.). Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian. http://repository.pertanian.go.id/handle/123456789/12425

Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, M., Shahzad, S. M., Yousaf, B., . . . Tu, S. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. Journal of Environmental Management, 183, 521-529. https://doi.org/10.1016/j.jenvman.2016.09.009.

Kowalska, J., Tyburski, J., Jakubowska, M., & Krzymińska, J. (2021). Correction to: Effect of Different Forms of Silicon on Growth of Spring Wheat Cultivated in Organic Farming System. Silicon, 13(1), 219-219. https://doi.org/10.1007/s12633-020-00445-x.

Landré, A., Saby, N. P. A., Barthès, B. G., Ratié, C., Guerin, A., Etayo, A., . . . Cornu, S. (2018). Prediction of total silicon concentrations in French soils using pedotransfer functions from mid-infrared spectrum and pedological attributes. Geoderma, 331, 70-80. https://doi.org/10.1016/j.geoderma.2018.06.007.

Li, Z., Unzué-Belmonte, D., Cornelis, J.-T., Linden, C. V., Struyf, E., Ronsse, F., & Delvaux, B. (2019). Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant and Soil, 438(1), 187-203. https://doi.org/10.1007/s11104-019-04013-0.

Liang, Y., Liao, M., Fang, Z., Guo, J., Xie, X., & Xu, C. (2021). How silicon fertilizer improves nitrogen and phosphorus nutrient availability in paddy soil? Journal of Zhejiang University-SCIENCE B, 22(7), 521-532. https://doi.org/10.1631/jzus.B2000708.

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., & Song, A. (2015). Analysis of Silicon in Soil, Plant and Fertilizer. In Y. Liang, M. Nikolic, R. Bélanger, H. Gong, & A. Song (Eds.), Silicon in Agriculture: From Theory to Practice (pp. 19-44). Springer Netherlands. https://doi.org/10.1007/978-94-017-9978-2_2

Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435-442. https://doi.org/10.1016/j.tplants.2015.04.007.

Meunier, J.-D., Sandhya, K., Prakash, N. B., Borschneck, D., & Dussouillez, P. (2018). pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India). Plant and Soil, 432(1), 143-155. https://doi.org/10.1007/s11104-018-3758-7.

Nwite, J. C., Unagwu, B. O., Okolo, C. C., Igwe, C. A., & Wakatsuki, T. (2019). Improving soil silicon and selected fertility status for rice production through rice-mill waste application in lowland sawah rice field of southeastern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, 8(1), 271-279. https://doi.org/10.1007/s40093-019-00299-3.

Panuju, D. R., Mizuno, K., & Trisasongko, B. H. (2013). The dynamics of rice production in Indonesia 1961–2009. Journal of the Saudi Society of Agricultural Sciences, 12(1), 27-37. https://doi.org/10.1016/j.jssas.2012.05.002.

Qurrohman, B. F. T., Suriadikusumah, A., Benny, J., & Sudirja, R. (2022). Study on the potential of silica-available based on types of soil on the productivity of paddy field in West Java Province, Indonesia. Eurasian Journal of Soil Science, 11(3), 266-274. https://doi.org/10.18393/ejss.1085264.

Siregar, A. F., Husnain, H., Wakatsuki, T., & Masunaga, T. (2016). Empirical study on effect of silicon application on rice blast disease and plant morphology in Indonesia. Journal of Agricultural Science, 8(6), 137-148. https://doi.org/10.5539/jas.v8n6p137.

Sirisuntornlak, N., Ullah, H., Sonjaroon, W., Anusontpornperm, S., Arirob, W., & Datta, A. (2021). Interactive Effects of Silicon and Soil pH on Growth, Yield and Nutrient Uptake of Maize. Silicon, 13(2), 289-299. https://doi.org/10.1007/s12633-020-00427-z.

Song, Z., Wang, H., Strong, P. J., & Shan, S. (2014). Increase of available soil silicon by Si-rich manure for sustainable rice production. Agronomy for Sustainable Development, 34(4), 813-819. https://doi.org/10.1007/s13593-013-0202-5.

Sufardi, S., Arabia, T., Khairullah, K., & Apriani, I. (2021). Particle size distribution and clay minerals in dryland soils of Aceh Besar, Indonesia. IOP Conference Series: Earth and Environmental Science, 922(1), 012013. https://doi.org/10.1088/1755-1315/922/1/012013.

Sumida, H. (1992). Silicon supplying capacity of paddy soils and characteristics of silicon uptake by rice [Oryza sativa] plants in cool regions in Japan. Bulletin of the Tohoku National Agricultural Experiment Station

Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A Review of Silicon in Soils and Plants and Its Role in US Agriculture: History and Future Perspectives. Soil Science, 181(9/10). https://journals.lww.com/soilsci/Fulltext/2016/09000/A_Review_of_Silicon_in_Soils_and_Plants_and_Its.1.aspx.

United Nations. (2022). World Population Prospects 2022. Department of Economic and Social Affairs, Population Division, United Nations.

Yaligar, R., Balakrishnan, P., Satishkumar, U., Kanannavar, P., Halepyati, A., Jat, M., & Rajesh, N. (2017). Land levelling and its temporal variability under different levelling, cultivation practices and irrigation methods for paddy. International Journal of Current Microbiology and Applied Sciences, 6(9), 3784-3789. https://doi.org/10.20546/ijcmas.2017.609.467.

Refbacks

  • There are currently no refbacks.