Native Metallophytes on Ultramafic Wooded Grassland in Sta Cruz, Mindoro Occidental, Philippines: Insights Into Phytostabilization and Forest Restoration

Marilyn Ong Quimado, Jonathan Ogayon Hernandez, Crusty Estoque Tinio, Maria Patrice Salazar Cambel, Amelita Carpio Luna, Edwino Sanson Fernando

Abstract

The native metallophytes species are the optimum choice to restore degraded areas on ultramafic soil. However, a limited restorative floristic survey on the wooded grassland of Mindoro Occidental had been reported. Four 20 m x 20 m plots were established to rapidly assess the plant diversity of a wooded grassland on ultramafic soil in Sta. Cruz, Mindoro Occidental, Philippines. Diversity index (H`), relative density, relative dominance, and importance value (IV) were computed. Physicochemical characteristics and heavy metal contents of the soil in the site were analytically determined. We identified 43 morpho-species of plants belonging to 25 families. Thirty-six of the morpho-species identified are Philippine natives and typically grow on ultramafic forests. Nine species out of the top 10 trees with the highest IV are native ones, with Buchanania arborescens Blume as the most dominant. The estimate of Relative Cover (%) also showed native species. Poles and sapling dominated the area, suggesting that active regeneration is taking place. Further, 72.94% of the ground cover were represented by tree flora recruits (e.g., B. arborescens, Alstonia macrophylla). The sites have overall moderate diversity (H` index of 2.7). The soil contains a high amount of Nickel, Chromium, Iron, and Manganese. There were no Nickel hyperaccumulators but 22 native species showed Aluminum and Silicon hyperaccumulation. Therefore, the study revealed that the surveyed area is home to important metallophytes that have the potential for phytostabilization and reforestation.

Keywords

Acid soils; Aluminum hyperaccumulators; Metallophytes; Rapid assessment; Serpentine

Full Text:

PDF

References

Adamidis, G. C., Kazakou, E., Baker, A. J. M., Reeves, R. D., & Dimitrakopoulos, P. G. (2014). The effect of harsh abiotic conditions on the diversity of serpentine plant communities on Lesbos, an eastern Mediterranean island. Plant Ecology & Diversity, 7(3), 433-444. https://doi.org/10.1080/17550874.2013.802050

Al-Snafi, A. E. (2017). A review on Dodonaea viscosa: A potential medicinal plant. IOSR Journal of Pharmacy, 07, 10-21. http://www.iosrphr.org/papers/v7i2V1/B0702011021.pdf

Amelia, P., Nugroho, A. E., Hirasawa, Y., Kaneda, T., Tougan, T., Horii, T., & Morita, H. (2021). Two new bisindole alkaloids from Tabernaemontana macrocarpa Jack. Journal of Natural Medicines, 75(3), 633-642. https://doi.org/10.1007/s11418-021-01510-4

Ata, J. P., Luna, A. C., Tinio, C. E., Quimado, M. O., Maldia, L. S., Abasolo, W. P., & Fernando, E. S. (2016). Rapid assessment of plant diversity in ultramafic soil environments in Zambales and Surigao del Norte, Philippines. Asian Journal of Biodiversity, 7(1). https://asianscientificjournals.com/new/publication/index.php/ajob/article/view/864

Baker, A. J. M., & Whiting, S. N. (2008, 14-17 October). Metallophytes — A Unique Biodiversity and Biotechnological Resource in the Care of the Minerals Industry Mine Closure 2008: Proceedings of the Third International Seminar on Mine Closure, Johannesburg. https://papers.acg.uwa.edu.au/p/852_2_Baker/

Bini, C., & Maleci, L. (2014). THE “SERPENTINE SYNDROME” (H. JENNY, 1980): A PROXY FOR SOIL REMEDIATION. EQA - International Journal of Environmental Quality, 15(15), 1-13. https://doi.org/10.6092/issn.2281-4485/4547

Carag, H., & Buot Jr, I. E. (2017). A checklist of the orders and families of medicinal plants in the Philippines. Sylvatrop, The Technical Journal of Philippine Ecosystems and Natural Resources, 27(1&2), 49-49. https://www.ukdr.uplb.edu.ph/journal-articles/5175/

Cardace, D., & Meyer-Dombard, D. A. R. (2014). Bedrocke and geochemical controls on extremophile habitats. In N. Rajakaruna, R. S. Boyd, & T. B. H. (E (Eds.), Plant Ecology and Evolution in Harsh Environments. Nova Science Publishers. https://novapublishers.com/shop/plant-ecology-and-evolution-in-harsh-environments/

Chathuranga, P. K. D., Dharmasena, S. K. A. T., Rajakaruna, N., & Iqbal, M. C. M. (2015). Growth and nickel uptake by serpentine and non-serpentine populations of Fimbristylis ovata (Cyperaceae) from Sri Lanka. Australian Journal of Botany, 63(2), 128-133. https://doi.org/10.1071/BT14232

De Alban, J. D. T. (2009). Report on the Physical Component of the Conservation Needs Assessment of Mindoro Island. M. C. Mindoro Biodiversity Conservation Foundation, Philippines.

Echevarria, G. (2018). Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry. In A. Van der Ent, G. Echevarria, A. J. M. Baker, & J. L. Morel (Eds.), Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants (pp. 135-156). Springer International Publishing. https://doi.org/10.1007/978-3-319-61899-9_8

Erskine, P., van der Ent, A., & Fletcher, A. (2012). Sustaining Metal-Loving Plants in Mining Regions. Science, 337(6099), 1172-1173. https://doi.org/doi:10.1126/science.337.6099.1172-b

Fernando, E. S., Celadiña, D. N., Tandang, D., Lillo, E. P., & Quimado, M. O. (2020). Brackenridgea (Ochnaceae) in the Philippines, with notes on foliar nickel hyperaccumulation in the genus. Gardens' Bulletin Singapore, 72(2), 255–273. https://doi.org/10.26492/gbs72(2).2020-09

Fernando, E. S., Quimado, M. O., & Doronila, A. I. (2014). Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys(37), 1-13. https://doi.org/10.3897/phytokeys.37.7136

Fernando, E. S., Quimado, M. O., Trinidad, L. C., & Doronila, A. I. (2013). The potential use of indigenous nickel hyperaccumulators for small-scale mining in The Philippines. 2013, 1(1), 6. https://doi.org/10.15243/jdmlm.2013.011.021

Frouz, J., & Kuráž, V. (2013). Soil Fauna and Soil Physical Properties. In J. Frouz (Ed.), Soil Biota and Ecosystem Development in Post Mining Sites. CRC Press. https://doi.org/10.1201/b15502

Galey, M. L., van der Ent, A., Iqbal, M. C. M., & Rajakaruna, N. (2017). Ultramafic geoecology of South and Southeast Asia. Botanical Studies, 58(1), 18. https://doi.org/10.1186/s40529-017-0167-9

Garnica-Díaz, C., Berazaín Iturralde, R., Cabrera, B., Calderón-Morales, E., Felipe, F. L., García, R., M. Hulshof, C. (2022). Global Plant Ecology of Tropical Ultramafic Ecosystems. The Botanical Review. https://doi.org/10.1007/s12229-022-09278-2

Ghasemi, R., Share, H., Sharifi, R., Boyd, R. S., & Rajakaruna, N. (2018). Inducing Ni sensitivity in the Ni hyperaccumulator plant Alyssum inflatum Nyárády (Brassicaceae) by transforming with CAX1, a vacuolar membrane calcium transporter. Ecological Research, 33(4), 737-747. https://doi.org/10.1007/s11284-018-1560-x

Gonzalez, J. C. T., Dans, A. T. L., & Afuang, L. E. (2000). Rapid Island-Wide Survey of Terrestrial Fauna and Flora on Mindoro Island, Philippines. Mindoro Biodiversity Conservation Foundation, Muntinlupa City, Philippines. https://www.mbcfi.org.ph/wp-content/uploads/2022/03/8_Mindoro_Island_Wide_Survey.pdf

Harrison, S., Spasojevic, M. J., & Li, D. (2020). Climate and plant community diversity in space and time. Proceedings of the National Academy of Sciences, 117(9), 4464-4470. https://doi.org/10.1073/pnas.1921724117

Lillo, E. P., Fernando, E. S., & Lillo, M. J. R. (2019). Plant diversity and structure of forest habitat types on Dinagat Island, Philippines. Journal of Asia-Pacific Biodiversity,12(1),83-105. https://doi.org/10.1016/j.japb.2018.07.003

Malta, P. G., Arcanjo-Silva, S., Ribeiro, C., Campos, N. V., & Azevedo, A. A. (2016). Rudgea viburnoides (Rubiaceae) overcomes the low soil fertility of the Brazilian Cerrado and hyperaccumulates aluminum in cell walls and chloroplasts. Plant and Soil, 408(1), 369-384. https://doi.org/10.1007/s11104-016-2926-x

Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.

Nafeeza, S., Pushpakumari, B., & Reddy, V. J. S. (2022). Phyto-pharmacological potential of Buchanania arborescens (Anacardiaceae), on wound healing and CNS depressent activities in albino wistar rats. World Journal of Pharmaceutical and Life Sciences, 8(2), 94-102. https://www.wjpls.org/home/article_abstract/2503

Perez, A. d. C., Faustino-Eslava, D. V., Yumul, G. P., Dimalanta, C. B., Tamayo, R. A., Yang, T. F., & Zhou, M.-F. (2013). Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle. Journal of Asian Earth Sciences, 65, 107-117. https://doi.org/10.1016/j.jseaes.2012.09.023

Pham, H. N. T., Vuong, Q. V., Bowyer, M. C., & Scarlett, C. J. (2021). Phytochemical Profiles and Potential Health Benefits of Helicteres hirsuta Lour. Proceedings, 70(1), 43. https://doi.org/10.3390/foods_2020-07804

Prasad, R., & Shivay, Y. S. (2020). Calcium as a plant nutrient. International Journal of Bio-resource and Stress Management, 11(5), i-iii. https://doi.org/10.23910/1.2020.2075a

Proctor, J. (2003). Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics, 6(1), 105-124. https://doi.org/10.1078/1433-8319-00045

Proctor, J., Argent, G., & Madulid, D. (1998). Forests of the ultramafic mount Giting-Giting, Sibuyan Island, the Philippines. Edinburgh Journal of Botany, 55(2), 295-316. https://doi.org/10.1017/S0960428600002201

Quimado, M. O., Fernando, E. S., Trinidad, L. C., & Doronila, A. (2015). Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines. Australian Journal of Botany, 63(2), 103-110. https://doi.org/10.1071/BT14284

Quintela-Sabarís, C., Masfaraud, J.-F., Séré, G., Sumail, S., van der Ent, A., Repin, R., Leguédois, S. (2019). Effects of reclamation effort on the recovery of ecosystem functions of a tropical degraded serpentinite dump site. Journal of Geochemical Exploration, 200, 139-151. https://doi.org/10.1016/j.gexplo.2019.02.004

Quisumbing, E. (1951). Medicinal Plants of the Philippines. Manila (Philippines), Bureau of Printing.

Řehounková, K., Jongepierová, I., Šebelíková, L., Vítovcová, K., & Prach, K. (2021). Topsoil removal in degraded open sandy grasslands: can we restore threatened vegetation fast? Restoration Ecology, 29(S1), e13188. https://doi.org/10.1111/rec.13188

Sarmiento, R. T. (2018). Vegetation of the ultramafic soils of Hinatuan Island, Tagana-An, Surigao Del Norte: An assessment as basis for ecological restoration. Ambient Science, 5(2), 44-50. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3804618

Spasojevic, M. J., Damschen, E. I., & Harrison, S. (2014). Patterns of seed dispersal syndromes on serpentine soils: examining the roles of habitat patchiness, soil infertility and correlated functional traits. Plant Ecology & Diversity, 7(3), 401-410. https://doi.org/10.1080/17550874.2012.678506

Tupaz, C. A. J., Watanabe, Y., Sanematsu, K., Echigo, T., Arcilla, C., & Ferrer, C. (2020). Ni-Co Mineralization in the Intex Laterite Deposit, Mindoro, Philippines. Minerals, 10(7), 579. https://doi.org/10.3390/min10070579

van der Ent, A., Echevarria, G., Pollard, A. J., & Erskine, P. D. (2019). X-Ray Fluorescence Ionomics of Herbarium Collections. Scientific Reports, 9(1), 4746. https://doi.org/10.1038/s41598-019-40050-6

Wahsha, M., Bini, C., Fontana, S., Wahsha, A., & Zilioli, D. (2012). Toxicity assessment of contaminated soils from a mining area in Northeast Italy by using lipid peroxidation assay. Journal of Geochemical Exploration,113, 112-117. https://doi.org/10.1016/j.gexplo.2011.09.008

Watanabe, T. (2022). Basic understanding of aluminum accumulator plants. Eurasian Journal of Forest Research, 22, 59-62. https://doi.org/10.14943/EJFR.22.59

Yumul Jr, G. P., Jumawan, F. T., & Dimalanta, C. B. (2009). Geology, Geochemistry and Chromite Mineralization Potential of the Amnay Ophiolitic Complex, Mindoro, Philippines. Resource Geology, 59(3), 263-281. https://doi.org/10.1111/j.1751-3928.2009.00095.x

Refbacks

  • There are currently no refbacks.