Current scenario, services, concerns, and restoration perspectives of ponds in India
Abstract
Ponds are self-sustaining and self-regulating ecosystems that are a vital part of the hydrological cycle and play a variety of roles in the biosphere. Ponds are diverse, extremely dynamic, and highly productive as they offer various services like harbor biodiversity, tool for combating water scarcity, have roles in pollution mitigation and carbon sequestration. Ponds also offer sustainable solutions to support climate change amelioration and aquatic resource management. However, ponds are the most neglected aquatic ecosystems, despite their huge ecological functions. Thus, ponds are debasing at an alarming rate as a result of increased anthropogenic activities and anthropogenically driven changes in natural processes, wreaking havoc on ecological health and water quality. In this context, the major threats to ponds include the dumping of solid waste, increased urbanization, pollution, encroachment and climate change which have resulted in the deterioration of ponds over the years. Sustainable management and restoration of ponds are crucial as this ecosystem offers a wide array of ecological functions. As a result, this research aims to assess the current state of ponds in India in terms of monitoring, ecological services provided, and the various threats to which they are subjected. Further, the discussions on management and perspective restoration strategies of this substantial ecosystem are also included. Thereby, this study suggests better conservation strategies for restoration, reclamation, and sustainable utilization of ponds.
Keywords
Full Text:
PDFReferences
Al Sayah, M. J., Nedjai, R., Abdallah, C., & Khouri, M. (2020). On the use of remote sensing to map the proliferation of aquaculture ponds and to investigate their effect on local climate, perspectives from the Claise watershed, France. Environmental Monitoring and Assessment, 192(5), 301. https://doi.org/10.1007/s10661-020-08250-0.
Alatraktchi, F. A. a. (2022). Rapid measurement of the waterborne pathogen Pseudomonas aeruginosa in different spiked water sources using electrochemical sensing: Towards on-site applications. Measurement, 195, 111124. https://doi.org/10.1016/j.measurement.2022.111124.
Alegbeleye, O. O., & Sant’Ana, A. S. (2021). Risks associated with the consumption of irrigation water contaminated produce: on the role of quantitative microbial risk assessment. Current Opinion in Food Science, 41, 88-98. https://doi.org/10.1016/j.cofs.2021.03.013.
Alemu, K., Assefa, B., Kifle, D., & Kloos, H. (2018). Nitrogen and Phosphorous Removal from Municipal Wastewater Using High Rate Algae Ponds. INAE Letters, 3(1), 21-32. https://doi.org/10.1007/s41403-018-0036-1.
Alfonso, G. (2017). Diversity and distribution of large branchiopods (Branchiopoda: Anostraca, Notostraca, Spinicaudata) in Apulian ponds (SE Italy). The European Zoological Journal, 84(1), 172-185. https://doi.org/10.1080/24750263.2017.1294628.
Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., . . . Kalderis, D. (2020). Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 12(5), 1927. https://www.mdpi.com/2071-1050/12/5/1927.
Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002.
Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. https://doi.org/10.1016/j.scitotenv.2017.02.206.
Arenas-Sánchez, A., Dolédec, S., Vighi, M., & Rico, A. (2021). Effects of anthropogenic pollution and hydrological variation on macroinvertebrates in Mediterranean rivers: A case-study in the upper Tagus river basin (Spain). Science of The Total Environment, 766, 144044. https://doi.org/10.1016/j.scitotenv.2020.144044.
Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180. https://doi.org/10.1007/s11274-016-2137-x.
Baghal Asghari, F., Nikaeen, M., & Mirhendi, H. (2013). Rapid monitoring of Pseudomonas aeruginosa in hospital water systems: a key priority in prevention of nosocomial infection. FEMS Microbiology Letters, 343(1), 77-81. https://doi.org/10.1111/1574-6968.12132.
Berg, M. D., Popescu, S. C., Wilcox, B. P., Angerer, J. P., Rhodes, E. C., McAlister, J., & Fox, W. E. (2016). Small farm ponds: overlooked features with important impacts on watershed sediment transport. JAWRA Journal of the American Water Resources Association, 52(1), 67-76. https://doi.org/10.1111/1752-1688.12369.
Biggs, J., von Fumetti, S., & Kelly-Quinn, M. (2017). The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia, 793(1), 3-39. https://doi.org/10.1007/s10750-016-3007-0.
Bozkurt, H., Bell, T., van Ogtrop, F., Phan-Thien, K.-Y., & McConchie, R. (2021). Assessment of microbial risk during Australian industrial practices for Escherichia coli O157:H7 in fresh cut-cos lettuce: A stochastic quantitative approach. Food Microbiology, 95, 103691. https://doi.org/10.1016/j.fm.2020.103691.
Brönmark, C., & Hansson, L.-A. (2017). The biology of lakes and ponds. Oxford university press.
Céréghino, R., Boix, D., Cauchie, H.-M., Martens, K., & Oertli, B. (2014). The ecological role of ponds in a changing world. Hydrobiologia, 723(1), 1-6. https://doi.org/10.1007/s10750-013-1719-y.
Céréghino, R., Oertli, B., Bazzanti, M., Coccia, C., Compin, A., Biggs, J., . . . Scher, O. (2012). Biological traits of European pond macroinvertebrates. Hydrobiologia, 689(1), 51-61. https://doi.org/10.1007/s10750-011-0744-y.
Chen, J., Qian, H., Gao, Y., Wang, H., & Zhang, M. (2020). Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions. Journal of Hydrology, 581, 124386. https://doi.org/10.1016/j.jhydrol.2019.124386.
Choudhary, J., Singh, S. N., & Singh, S. (2014). Physico-Chemical and Biological Parameters of the Three Rural Ponds of Sasaram of Bihar. International Journal of Applied Sciences and Biotechnology, 2(2), 206-210. https://doi.org/10.3126/ijasbt.v2i2.10371.
Clevenot, L., Carré, C., & Pech, P. (2018). A Review of the Factors That Determine Whether Stormwater Ponds Are Ecological Traps And/or High-Quality Breeding Sites for Amphibians [Review]. Frontiers in Ecology and Evolution, 6. https://doi.org/10.3389/fevo.2018.00040.
Cooke, M. (2005). Design of mechanically agitated contactors or reactors with "attitude". The University of Manchester (United Kingdom).
CPCB. (2020). Status of water quality in India- 2020. Monitoring of Indian National Aquatic Resources, Series: MINARS/ /2019-20, Central Pollution Control Board, Ministry of Environment and Forests, Government of India.
Dalmolin, D. A., dos Santos, T. G., Tozetti, A. M., & Ramos Pereira, M. J. (2020). What and When Local Predictors Drive Tadpole Diversity in Subtropical Temporary Ponds? bioRxiv, 2020.2003.2027.978338. https://doi.org/10.1101/2020.03.27.978338.
de Campos, F. V., de Oliveira, J. A., da Silva, A. A., Ribeiro, C., & dos Santos Farnese, F. (2019). Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool? Ecological Indicators, 104, 794-801. https://doi.org/10.1016/j.ecolind.2019.04.048.
De Marco, P., Nogueira, D. S., Correa, C. C., Vieira, T. B., Silva, K. D., Pinto, N. S., . . . Oertli, B. (2014). Patterns in the organization of Cerrado pond biodiversity in Brazilian pasture landscapes. Hydrobiologia, 723(1), 87-101. https://doi.org/10.1007/s10750-013-1695-2.
de Vries, W., & Marco, A. (2017). The importance of fluvial habitats for amphibian conservation in the Mediterranean climate. Basic and Applied Herpetology, 31, 5-16. https://doi.org/10.11160/bah.56.
Deacon, C., Samways, M. J., & Pryke, J. S. (2018). Artificial reservoirs complement natural ponds to improve pondscape resilience in conservation corridors in a biodiversity hotspot. PLOS ONE, 13(9), e0204148. https://doi.org/10.1371/journal.pone.0204148.
Dey, S., Botta, S., Kallam, R., Angadala, R., & Andugala, J. (2021). Seasonal variation in water quality parameters of Gudlavalleru Engineering College pond. Current Research in Green and Sustainable Chemistry, 4, 100058. https://doi.org/10.1016/j.crgsc.2021.100058.
Dimitriou, E., Moussoulis, E., Díaz-Paniagua, C., & Serrano, L. (2017). Hydrodynamic numerical modelling of the water level decline in four temporary ponds of the Doñana National Park (SW Spain). Journal of Arid Environments, 147, 90-102. https://doi.org/10.1016/j.jaridenv.2017.09.004.
Dubey, T. P. (2013). The biodiversity of the ponds. The biodiversity of the ponds. Water and Biodiversity, Uttar Pradesh State Biodiversity Board.
Ekperusi, O. A., & Aigbodion, I. F. (2015). Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. SpringerPlus, 4(1), 540. https://doi.org/10.1186/s40064-015-1328-5.
El Madihi, M., Rhazi, L., Van den Broeck, M., Rhazi, M., Waterkeyn, A., Saber, E.-r., . . . Grillas, P. (2017). Plant community patterns in Moroccan temporary ponds along latitudinal and anthropogenic disturbance gradients. Plant Ecology & Diversity, 10(2-3), 197-215. https://doi.org/10.1080/17550874.2017.1346716.
English, E. L., Schutz, K. C., Willsey, G. G., & Wargo, M. J. (2018). Transcriptional Responses of Pseudomonas aeruginosa to Potable Water and Freshwater. Applied and environmental microbiology, 84(6), e02350-02317. https://doi.org/10.1128/aem.02350-17.
Escoto, D. F., Gayer, M. C., Bianchini, M. C., da Cruz Pereira, G., Roehrs, R., & Denardin, E. L. G. (2019). Use of Pistia stratiotes for phytoremediation of water resources contaminated by clomazone. Chemosphere, 227, 299-304. https://doi.org/10.1016/j.chemosphere.2019.04.013.
Fontanarrosa, M. S., Allende, L., Rennella, A. M., Boveri, M. B., & Sinistro, R. (2019). A novel device with macrophytes and bio balls as a rehabilitation tool for small eutrophic urban ponds: a mesocosm approximation. Limnologica, 74, 61-72. https://doi.org/10.1016/j.limno.2018.11.005.
Garcia-Orellana, J., Cañas, L., Masqué, P., Obrador, B., Olid, C., & Pretus, J. (2011). Chronological reconstruction of metal contamination in the Port of Maó (Minorca, Spain). Marine Pollution Bulletin, 62(8), 1632-1640. https://doi.org/10.1016/j.marpolbul.2011.06.013.
Gilbert, P. J., Taylor, S., Cooke, D. A., Deary, M. E., & Jeffries, M. J. (2021). Quantifying organic carbon storage in temperate pond sediments. Journal of Environmental Management, 280, 111698. https://doi.org/10.1016/j.jenvman.2020.111698.
Goswami, S. N., Trivedi, R., Saha, S., & Mandal, A. (2017). Seasonal variations of water characteristics in three urban ponds with different management practices at Kolkata of West Bengal, India. Journal of entomology and zoology studies, 5(6), 1449-1454. https://www.entomoljournal.com/archives/2017/vol5issue6/PartT/5-6-32-121.pdf.
Gothwal, R., & Gupta, G. K. (2019). Limnology, Planktonic diversity and Ichthyofauna of Sant-Sarover Pond: Mount Abu (Rajasthan), India. World News of Natural Sciences, 22, 129-138. https://www.infona.pl/resource/bwmeta1.element.psjd-73beecca-2763-4eee-ada7-45d92ff25c9f.
Grasel, D., Mormul, R. P., Bozelli, R. L., Thomaz, S. M., & Jarenkow, J. A. (2018). Brazil's Native Vegetation Protection Law threatens to collapse pond functions. Perspectives in Ecology and Conservation, 16(4), 234-237. https://doi.org/10.1016/j.pecon.2018.08.003.
Greenhalgh, J. A., Stone, H. J. R., Fisher, T., & Sayer, C. D. (2021). Ecoacoustics as a novel tool for assessing pond restoration success: Results of a pilot study. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(8), 2017-2028. https://doi.org/10.1002/aqc.3605.
Hill, M. J., Hassall, C., Oertli, B., Fahrig, L., Robson, B. J., Biggs, J., . . . Wood, P. J. (2018). New policy directions for global pond conservation. Conservation Letters, 11(5), e12447. https://doi.org/10.1111/conl.12447.
Jafarzadeh Samani, R., Tajbakhsh, E., Momtaz, H., & Kabiri Samani, M. (2021). Prevalence of Virulence Genes and Antibiotic Resistance Pattern in Enterococcus Faecalis Isolated from Urinary Tract Infection in Shahrekord, Iran. Rep Biochem Mol Biol, 10(1), 50-59. https://doi.org/10.52547/rbmb.10.1.50.
Jhansilakshmi, R., EUB. (2015). Seasonal variations in physico-chemical properties of ponds in Bhimavaram town Andhra Pradesh India. International Journal of Pharmacology & Biological Sciences, 9(3), 55-65.
Jooste, M. L., Samways, M. J., & Deacon, C. (2020). Fluctuating pond water levels and aquatic insect persistence in a drought-prone Mediterranean-type climate. Hydrobiologia, 847(5), 1315-1326. https://doi.org/10.1007/s10750-020-04186-1.
Kerr, K. G., & Snelling, A. M. (2009). Pseudomonas aeruginosa: a formidable and ever-present adversary. Journal of Hospital Infection, 73(4), 338-344. https://doi.org/10.1016/j.jhin.2009.04.020.
Khilchevskyi, V. K., & Grebin, V. V. (2020). Hydrographic monitoring of ponds in Ukraine and their classification by morphometric parameters. 2020(1), 1-5. https://doi.org/10.3997/2214-4609.202056004.
Kumar, M., & Sinha, R. (2017). Analysis of physico–chemical characteristics of a very old pond in the campus of BRA Bihar University, Muzaffarpur (Bihar) India. Advances in Bioresearch, 8(4), 176-178. https://soeagra.com/abr/july_2017/32.pdf.
Kumari, A. (2020). Enumeration to Aquatic Ferns in Fly Ash Polluted Habitat of Bihar, India. Cryptogam Biodiversity and Assessment, 4(02), 14-19. https://cbaj.in/index.php/journal/article/view/205/60.
Labat, F. (2017). A new method to estimate aquatic invertebrate diversity in French shallow lakes and ponds. Ecological Indicators, 81, 401-408. https://doi.org/10.1016/j.ecolind.2017.05.073.
Lee, S.-Y., Ryan, M. E., Hamlet, A. F., Palen, W. J., Lawler, J. J., & Halabisky, M. (2015). Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands. PLOS ONE, 10(9), e0136385. https://doi.org/10.1371/journal.pone.0136385.
Lischeid, G., Kalettka, T., Holländer, M., Steidl, J., Merz, C., Dannowski, R., . . . Pätzig, M. (2018). Natural ponds in an agricultural landscape: External drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica, 68, 5-16. https://doi.org/10.1016/j.limno.2017.01.003.
Liu, Z., Iqbal, M., Zeng, Z., Lian, Y., Zheng, A., Zhao, M., . . . Xie, J. (2020). Comparative analysis of microbial community structure in the ponds with different aquaculture model and fish by high-throughput sequencing. Microbial Pathogenesis, 142, 104101. https://doi.org/10.1016/j.micpath.2020.104101.
Magnus, R., & Rannap, R. (2019). Pond construction for threatened amphibians is an important conservation tool, even in landscapes with extant natural water bodies. Wetlands Ecology and Management, 27(2), 323-341. https://doi.org/10.1007/s11273-019-09662-7.
Manoj, K., & Padhy, P. K. (2015). Environmental perspectives of pond ecosystems: global issues, services and Indian scenarios. Current World Environment, 10(3), 848-867. https://doi.org/10.12944/CWE.10.3.16.
Meher, H., Behera, P., & Panda, S. (2018). Evalution of water quality index (WQI) of pond water of Paradeep area, Odisha, India. Indian Journal of Environmental Sciences, 22(2), 76-81. https://www.ijesonline.co.in/wp-content/uploads/2018/11/76-81-Meher-et-al.-2018.pdf.
Mishra, S., Singh, A. L., & Tiwary, D. (2014). Studies of physico-chemical status of the ponds at Varanasi Holy City under Anthropogenic influences. International Journal of Environmental Research and Development, 4(3), 261-268. http://www.ripublication.com/ijerd_spl/ijerdv4n3spl_10.pdf.
Moore, B. C., Cross, B. K., Beutel, M., Dent, S., Preece, E., & Swanson, M. (2012). Newman Lake restoration: A case study Part III. Hypolimnetic oxygenation. Lake and Reservoir Management, 28(4), 311-327. https://doi.org/10.1080/07438141.2012.738463.
Mullins, M. L., & Doyle, R. D. (2019). Big things come in small packages: why limnologists should care about small ponds. Acta Limnologica Brasiliensia, 31(105), 1-8. https://doi.org/10.1590/S2179-975X4119.
Narayanan, K., & Getachew, A. (2021). Investigating suitability of treated wastewater for agriculture in Hawassa, Sidama region, Ethiopia. International Journal of Agricultural Research, Innovation and Technology, 10(2), 59-65. https://doi.org/10.3329/ijarit.v10i2.51578.
Nélieu, S., Lamy, I., Karolak, S., Delarue, G., Crouzet, O., Barraud, C., . . . Baudry, E. (2021). Impact of peri-urban landscape on the organic and mineral contamination of pond waters and related risk assessment. Environmental Science and Pollution Research, 28(42), 59256-59267. https://doi.org/10.1007/s11356-020-10355-5.
Nupur, S. H., Rayhan, A., & Ahmed, S. (2020). Bacteria With Heavy Metal Bioremediation Potential Isolated From The Polluted River Water Of Bangladesh. IOSR Journal of Biotechnology and Biochemistry, 6(1), 06-14. http://www.iosrjournals.org/iosr-jbb/papers/Volume%206,%20Issue%201/Series-2/B0601020614.pdf.
Oldenborg, K. A., & Steinman, A. D. (2019). Impact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. Science of The Total Environment, 650, 1969-1979. https://doi.org/10.1016/j.scitotenv.2018.09.298.
Pan, B., Yuan, J., Zhang, X., Wang, Z., Chen, J., Lu, J., . . . Xu, M. (2016). A review of ecological restoration techniques in fluvial rivers. International Journal of Sediment Research, 31(2), 110-119. https://doi.org/10.1016/j.ijsrc.2016.03.001.
Pan, L., Wu, L., & Tu, X. (2007). Chemical oxidation-flocculation technology applied for enhanced treatment of polluted river water. Chinese Journal of Environmental Engineering, 1(9), 54-57.
Pandit, D. N., Kumari, R., & Shitanshu, S. K. (2022). A comparative assessment of the status of Surajkund and Rani Pond, Aurangabad, Bihar, India using overall Index of Pollution and Water Quality Index. Acta Ecologica Sinica, 42(3), 149-155. https://doi.org/10.1016/j.chnaes.2020.11.009.
Price, R. G., & Wildeboer, D. (2017). E. coli as an Indicator of Contamination and Health Risk in Environmental Waters. In S. Amidou (Ed.), Escherichia coli (pp. Ch. 7). IntechOpen. https://doi.org/10.5772/67330
Rajput, S., Kaur, T., Arora, S., & Kaur, R. (2020). Heavy Metal Concentration and Mutagenic Assessment of Pond Water Samples: a Case Study from India [journal article]. Polish Journal of Environmental Studies, 29(1), 789-798. https://doi.org/10.15244/pjoes/103449.
Rajput, S., Kumari, A., Arora, S., & Kaur, R. (2018). Multi-residue pesticides analysis in water samples using reverse phase high performance liquid chromatography (RP-HPLC). MethodsX, 5, 744-751. https://doi.org/10.1016/j.mex.2018.07.005
Rajput, S., Sharma, R., Kaur, R., & Arora, S. (2017). Analysis of Seasonal and Temporal Variation in Physicochemical and Microbial Characteristics of Surface Water in Amritsar (Punjab). Journal of Chemical and Pharmaceutical Research, 9(10), 242-248. https://www.jocpr.com/articles/analysis-of-seasonal-and-temporal-variation-in-physicochemical-and-microbial-characteristics-of-surface-water-in-amritsa-9311.html.
Rey, F., Bifulco, C., Bischetti, G. B., Bourrier, F., De Cesare, G., Florineth, F., . . . Stokes, A. (2019). Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration. Science of The Total Environment, 648, 1210-1218. https://doi.org/10.1016/j.scitotenv.2018.08.217.
Robertson, M., Galatowitsch, S. M., & Matthews, J. W. (2021). Wetland Compensation and Landscape Change in a Rapidly Urbanizing Context. Environmental Management, 67(2), 355-370. https://doi.org/10.1007/s00267-020-01380-8.
Rodríguez-Rodríguez, M., Aguilera, H., Guardiola-Albert, C., & Fernández-Ayuso, A. (2021). Climate Influence Vs. Local Drivers in Surface Water-Groundwater Interactions in Eight Ponds of Doñana National Park (Southern Spain). Wetlands, 41(2), 25. https://doi.org/10.1007/s13157-021-01425-6.
Růžičková, M., Vítězová, M., & Kushkevych, I. (2020). The Characterization of Enterococcus Genus: Resistance Mechanisms and Inflammatory Bowel Disease. Open Medicine, 15, 211-224. https://doi.org/10.1515/med-2020-0032.
Safauldeen, S. H., Hasan, H. A., & Sheikh Abdullah, S. R. (2019). Phytoremediation Efficiency of Water Hyacinth for Batik Textile Effluent Treatment [journal article]. Journal of Ecological Engineering, 20(9), 177-187. https://doi.org/10.12911/22998993/112492.
Sahuquillo, M., & Miracle, M. R. (2019). Rotifer communities in Mediterranean ponds in eastern Iberian Peninsula: abiotic and biotic factors defining pond types. Limnetica, 38(1), 103-117. https://doi.org/10.23818/limn.38.14.
Sarkar, R., Ghosh, A. R., & Mondal, N. K. (2020). Comparative study on physicochemical status and diversity of macrophytes and zooplanktons of two urban ponds of Chandannagar, WB, India. Applied Water Science, 10(2), 63. https://doi.org/10.1007/s13201-020-1146-y.
Shukla, B. K., Gupta, A., Sharma, P. K., & Bhowmik, A. R. (2020). Pollution status and water quality assessment in pre-monsoon season: A case study of rural villages in Allahabad district, Uttar Pradesh, India. Materials Today: Proceedings, 32, 824-830. https://doi.org/10.1016/j.matpr.2020.03.823.
Sidhu, S. K., Sekhon, G. S., Aulakh, R. K., & Kler, T. K. (2021). Prioritizing Sustenance of Village Ponds for Avian Conservation: A Case Study from Punjab, India. Pakistan Journal of Zoology, 53(2), 555. https://doi.org/10.17582/journal.pjz/20190918070927.
Singh, A. P., & Kumar, R. (2017). Studies on seasonal variations in physico-chemical parameter of Nageshwar pond at Chapra district, Saran, India. International Journal of Current Trends in Science and Technology, 7, 20411-20415.
Sricoth, T., Meeinkuirt, W., Saengwilai, P., Pichtel, J., & Taeprayoon, P. (2018). Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environmental Science and Pollution Research, 25(15), 14964-14976. https://doi.org/10.1007/s11356-018-1714-y.
Stefanoudis, P., Sayer, C., Greaves, H., Davidson, T., Robson, H., Almeida, D., & Smith, E. (2017). Consequences of fish for cladoceran, water beetle and macrophyte communities in a farmland pond landscape: Implications for conservation. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 190(2), 141-156. https://doi.org/10.1127/fal/2017/1004.
Stelting, S., Burns, R., Sunna, A., Visnovsky, G., & Bunt, C. (2010). Immobilisation of Pseudomonas sp. strain ADP. In S. M. Zydenbos & T. A. Jackson (Eds.), Microbial Products: Exploiting Microbial Diversity for Sustainable Plant Production. Zyndenbos (pp. 97-102). New Zealand: New Zealand Plant Protection Society.
Stewart, R. I. A., Andersson, G. K. S., Brönmark, C., Klatt, B. K., Hansson, L.-A., Zülsdorff, V., & Smith, H. G. (2017). Ecosystem services across the aquatic–terrestrial boundary: Linking ponds to pollination. Basic and Applied Ecology, 18, 13-20. https://doi.org/10.1016/j.baae.2016.09.006.
Taguchi, V. J., Olsen, T. A., Natarajan, P., Janke, B. D., Gulliver, J. S., Finlay, J. C., & Stefan, H. G. (2020). Internal loading in stormwater ponds as a phosphorus source to downstream waters. Limnology and Oceanography Letters, 5(4), 322-330. https://doi.org/10.1002/lol2.10155.
Thornhill, I., Batty, L., Hewitt, M., Friberg, N. R., & Ledger, M. E. (2018). The application of graph theory and percolation analysis for assessing change in the spatial configuration of pond networks. Urban Ecosystems, 21(2), 213-225. https://doi.org/10.1007/s11252-017-0724-8.
Vad, C. F., Péntek, A. L., Cozma, N. J., Földi, A., Tóth, A., Tóth, B., . . . Horváth, Z. (2017). Wartime scars or reservoirs of biodiversity? The value of bomb crater ponds in aquatic conservation. Biological Conservation, 209, 253-262. https://doi.org/10.1016/j.biocon.2017.02.025.
Verma, S., & Khan, J. (2015). Study of Physico-chemical characterization of Birla Talab in BITS Pilani, Jhunjhunu (Raj.) India. Indian Journal of Research in Pharmacy and Biotechnology, 3(5), 397. https://ijrpb.com/issues/Volume%203_Issue%205/ijrpb%203(5)%2012%20Sunita%20Verma%20397-399.pdf.
Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369. https://doi.org/10.1016/j.eti.2019.100369.
White, K., Dickson-Anderson, S., Majury, A., McDermott, K., Hynds, P., Brown, R. S., & Schuster-Wallace, C. (2021). Exploration of E. coli contamination drivers in private drinking water wells: An application of machine learning to a large, multivariable, geo-spatio-temporal dataset. Water Research, 197, 117089. https://doi.org/10.1016/j.watres.2021.117089.
Williams, R. T., & Fryirs, K. A. (2020). The morphology and geomorphic evolution of a large chain-of-ponds river system. Earth Surface Processes and Landforms, 45(8), 1732-1748. https://doi.org/10.1002/esp.4842.
Yadav, P., Yadav, V., Yadav, A., & Khare, P. (2013). Physico-chemical characteristics of a fresh water pond of Orai, UP, Central India. Octa Journal of Biosciences, 1(2), 177-184. http://sciencebeingjournal.com/octa-journal-biosciences/physico-chemical-characteristics-fresh-water-pond-orai-u-p-central-india.
Zamora-Marín, J. M., Ilg, C., Demierre, E., Bonnet, N., Wezel, A., Robin, J., . . . Oertli, B. (2021). Contribution of artificial waterbodies to biodiversity: A glass half empty or half full? Science of The Total Environment, 753, 141987. https://doi.org/10.1016/j.scitotenv.2020.141987.
Zamora-Marín, J. M., Zamora-López, A., Jiménez-Franco, M. V., Calvo, J. F., & Oliva-Paterna, F. J. (2021). Small ponds support high terrestrial bird species richness in a Mediterranean semiarid region. Hydrobiologia, 848(7), 1623-1638. https://doi.org/10.1007/s10750-021-04552-7.
Zhang, Y., Luo, P., Zhao, S., Kang, S., Wang, P., Zhou, M., & Lyu, J. (2020). Control and remediation methods for eutrophic lakes in the past 30 years. Water Science and Technology, 81(6), 1099-1113. https://doi.org/10.2166/wst.2020.218.
Zhou, D., Yu, J., Guan, B., Li, Y., Yu, M., Qu, F., . . . Yang, J. (2020). A Comparison of the Development of Wetland Restoration Techniques in China and Other Nations. Wetlands, 40(6), 2755-2764. https://doi.org/10.1007/s13157-020-01305-5.
Refbacks
- There are currently no refbacks.