Land suitability assessment for agricultural crops in Enrekang, Indonesia: combination of principal component analysis and fuzzy methods
Abstract
Land suitability assessment is essential for the efficient use of diminishing fertile agricultural land. Assessment parameters include soil texture, pH, the sum of basic cations, base saturation, cation exchange capacity, organic carbon, soil depth, slope, and mean annual temperature and precipitation data. Results showed that 76.28% and 23.26% of the total area were optimally and moderately suitable for coffee growth, respectively; 9.6% and 90% were optimally and moderately suitable for cocoa growth, respectively; 1.98%, 78.74%, and 19.26% were optimally, moderately, and marginally suitable for clove growth, respectively; and 6.68%, 86.89%, and 6.41% was optimally, moderately, and marginally suitable for pepper growth, respectively. The final land suitability index (LSI) was strongly influenced by the threshold values used by the researcher and the quality of the land indicator itself. Plant threshold values differed due to variations in plant recruitment. The main limiting factors were mean annual temperature <26°C, acidic soil pH, and low CEC. This study showed that the fuzzy method is ideal for converting the numerical data of various magnitudes into membership function values and representing land suitability. The principal component analysis is an effective method to determine the weights of multiple factors in a systematic and objective manner. The linearity test found a correlation between LSI and production with f = 0.00, indicating that the applied model can predict agricultural production and is applicable to other agricultural land management.
Keywords
Full Text:
PDFReferences
Akbari, M., Neamatollahi, E., & Neamatollahi, P. (2019). Evaluating land suitability for spatial planning in arid regions of eastern Iran using fuzzy logic and multi-criteria analysis. Ecological indicators, 98, 587-598. https://doi.org/10.1016/j.ecolind.2018.11.035
Arabsheibani, R., Kanani Sadat, Y., & Abedini, A. (2016). Land suitability assessment for locating industrial parks: a hybrid multi criteria decision‐making approach using Geographical Information System. Geographical Research, 54(4), 446-460. https://doi.org/10.1111/1745-5871.12176
Armenise, E., Redmile-Gordon, M., Stellacci, A., Ciccarese, A., & Rubino, P. (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130, 91-98. https://doi.org/10.1016/j.still.2013.02.013
Ayehu, G. T., & Besufekad, S. A. (2015). Land suitability analysis for rice production: A GIS based multi-criteria decision approach. American Journal of Geographic Information System, 4(3), 95-104. https://doi.org/10.5923/j.ajgis.20150403.02
Barati, A. A., Azadi, H., Dehghani Pour, M., Lebailly, P., & Qafori, M. (2019). Determining Key Agricultural Strategic Factors Using AHP-MICMAC. Sustainability, 11(14), 3947. https://www.mdpi.com/2071-1050/11/14/3947
Basu, T., Das, A., & Pal, S. (2022). Application of geographically weighted principal component analysis and fuzzy approach for unsupervised landslide susceptibility mapping on Gish River Basin, India. Geocarto International, 37(5), 1294-1317. https://doi.org/10.1080/10106049.2020.1778105
Bernardi, A. d. C., Bettiol, G., Ferreira, R. d. P., Santos, K., Rabello, L., & Inamasu, R. (2016). Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precision agriculture, 17(6), 737-752. https://doi.org/10.1007/s11119-016-9446-9
Devi, K., & Yadav, S. P. (2013). A multicriteria intuitionistic fuzzy group decision making for plant location selection with ELECTRE method. The International Journal of Advanced Manufacturing Technology, 66(9), 1219-1229. https://doi.org/10.1007/s00170-012-4400-0
Feizizadeh, B., & Blaschke, T. (2013). Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS. Journal of Environmental Planning and Management, 56, 1 - 23. https://doi.org/10.1080/09640568.2011.646964
Gebre, S. L., Cattrysse, D., Alemayehu, E., & Van Orshoven, J. (2021). Multi-criteria decision making methods to address rural land allocation problems: A systematic review. International Soil and Water Conservation Research, 9(4), 490-501. https://doi.org/10.1016/j.iswcr.2021.04.005
Gentili, R., Ambrosini, R., Montagnani, C., Caronni, S., & Citterio, S. (2018). Effect of Soil pH on the Growth, Reproductive Investment and Pollen Allergenicity of Ambrosia artemisiifolia L. Front Plant Sci, 9, 1335. https://doi.org/10.3389/fpls.2018.01335
Geo, L., & Saediman, H. (2019). Analysis of Factors Affecting Cocoa Development in Southeast Sulawesi. Pakistan Journal of Nutrition, 18(5), 479-490. https://doi.org/10.3923/pjn.2019.479.490
Ghaemi, M., Astaraei, A. R., Emami, H., Nassiri Mahalati, M., & Sanaeinejad, S. H. (2014). Determining soil indicators for soil sustainability assessment using principal component analysis of Astan Quds-east of Mashhad-Iran. Journal of soil science and plant nutrition, 14(4), 1005-1020. https://doi.org/10.4067/S0718-95162014005000077
Gharechelou, S., Tateishi, R., Sharma, R. C., & Johnson, B. A. (2016). Soil moisture mapping in an arid area using a land unit area (LUA) sampling approach and geostatistical interpolation techniques. ISPRS International Journal of Geo-Information, 5(3), 35. https://doi.org/10.3390/ijgi5030035
Giordano, R., & Liersch, S. (2012). A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring. Environmental modelling & software, 36, 49-63. https://doi.org/10.1016/j.envsoft.2011.09.004
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417. https://doi.org/10.1037/h0071325
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 1-16. https://doi.org/10.1098/rsta.2015.0202
Juergensmeyer, J. C., & Roberts, T. E. (2013). Land Use Planning & Development Regulation Law. West Academic Publishing.
Karl Pearson, F. R. S. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. https://doi.org/10.1080/14786440109462720
Keshavarzi, A., Tuffour, H. O., Bagherzadeh, A., Tattrah, L. P., Kumar, V., Gholizadeh, A., & Rodrigo-Comino, J. (2020). Using fuzzy-AHP and parametric technique to assess soil fertility status in Northeast of Iran. Journal of Mountain Science, 17(4), 931-948. https://doi.org/10.1007/s11629-019-5666-6
Kılıc, O. M., Ersayın, K., Gunal, H., Khalofah, A., & Alsubeie, M. S. (2022). Combination of fuzzy-AHP and GIS techniques in land suitability assessment for wheat (Triticum aestivum) cultivation. Saudi Journal of Biological Sciences, 29(4), 2634-2644. https://doi.org/10.1016/j.sjbs.2021.12.050
Kolesnikov, S., Yaroslavtsev, M., Spivakova, N., & Kazeev, K. S. (2013). Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment. Eurasian Soil Science, 46(2), 176-181. https://doi.org/10.1134/S1064229313020087
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. https://doi.org/10.1016/j.rser.2016.11.191
Liu, Y., Jiao, L., Liu, Y., & He, J. (2013). A self-adapting fuzzy inference system for the evaluation of agricultural land. Environmental modelling & software, 40, 226-234. https://doi.org/10.1016/j.envsoft.2012.09.013
Luan, W., Lu, L., Li, X., & Ma, C. (2017). Weight determination of sustainable development indicators using a global sensitivity analysis method. Sustainability, 9(2), 303. https://doi.org/10.3390/su9020303
Maddahi, Z., Jalalian, A., Zarkesh, M. M. K., & Honarjo, N. (2014). Land suitability analysis for rice cultivation using multi criteria evaluation approach and GIS. European Journal of Experimental Biology, 4(3), 639-648. http://prof.khuisf.ac.ir/images/Uploaded_files/9[4128766].PDF
Martinsen, V., Alling, V., Nurida, N. L., Mulder, J., Hale, S. E., Ritz, C., . . . Cornelissen, G. (2015). pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Science and Plant Nutrition, 61(5), 821-834. https://doi.org/10.1080/00380768.2015.1052985
Montanaro, G., Xiloyannis, C., Nuzzo, V., & Dichio, B. (2017). Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Scientia Horticulturae, 217, 92-101. https://doi.org/10.1016/j.scienta.2017.01.012
Mosadeghi, R., Warnken, J., Tomlinson, R., & Mirfenderesk, H. (2015). Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Computers, Environment and Urban Systems, 49, 54-65. https://doi.org/10.1016/j.compenvurbsys.2014.10.001
Mugiyo, H., Chimonyo, V. G., Sibanda, M., Kunz, R., Masemola, C. R., Modi, A. T., & Mabhaudhi, T. (2021). Evaluation of land suitability methods with reference to neglected and underutilised crop species: A scoping review. Land, 10(2), 125. https://doi.org/10.3390/land10020125
Mukherjee, A., & Lal, R. (2014). Comparison of soil quality index using three methods. PloS one, 9(8), e105981. https://doi.org/10.1371/journal.pone.0105981
Nabati, J., Nezami, A., Neamatollahi, E., & Akbari, M. (2020). GIS-based agro-ecological zoning for crop suitability using fuzzy inference system in semi-arid regions. Ecological indicators, 117, 106646. https://doi.org/10.1016/j.ecolind.2020.106646
Nasery, S., Matci, D. K., & Avdan, U. (2021). GIS-based wind farm suitability assessment using fuzzy AHP multi-criteria approach: the case of Herat, Afghanistan. Arabian Journal of Geosciences, 14(12), 1-15. https://doi.org/10.1007/s12517-021-07478-5
Nasrollahi, M., & Razmi, J. (2021). A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty. Operational Research, 21(1), 525-552. https://doi.org/10.1007/s12351-019-00459-3
Nguyen, H., Nguyen, T., Hoang, N., Bui, D., Vu, H., & Van, T. (2020). The application of LSE software: A new approach for land suitability evaluation in agriculture. Computers and Electronics in Agriculture, 173, 105440. https://doi.org/10.1016/j.compag.2020.105440
Nurmiaty, & Baja, S. (2014). Using fuzzy set approaches in a raster GIS for land suitability assessment at a regional scale: Case study in Maros region, Indonesia. Modern Applied Science, 8(3), 115. https://www.ccsenet.org/journal/index.php/mas/article/view/34781
Pan, Z., Tang, D., Kong, H., & He, J. (2022). An Analysis of Agricultural Production Efficiency of Yangtze River Economic Belt Based on a Three-Stage DEA Malmquist Model. International Journal of Environmental Research and Public Health, 19(2), 958. https://doi.org/10.3390/ijerph19020958
Paul, S., & Ghosh, S. (2022). Identification of solid waste dumping site suitability of Kolkata Metropolitan Area using Fuzzy-AHP model. Cleaner Logistics and Supply Chain, 3, 100030. https://doi.org/10.1016/j.clscn.2022.100030
Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., . . . Torero, M. (2020). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809-820. https://doi.org/10.1038/s41893-020-00617-y
PSU. (2018). Stat 505 applied multivariate statistical analysis. In Lesson 11 principal component analysis. Pennsylvania State University. https://online.stat.psu.edu/stat505/lesson/11
Qiu, F., Chastain, B., Zhou, Y., Zhang, C., & Sridharan, H. (2014). Modeling land suitability/capability using fuzzy evaluation. GeoJournal, 79(2), 167-182. https://doi.org/10.1007/s10708-013-9503-0
Rajabi, N., & Mousavizadeh, S. (2015). Implementation of location prioritization of agricultural Industries in Rural Regions by the use of (TOPSIS). Turkish Journal of Scientific Research, 2(2), 35-43.
Ranjbar, A., Emami, H., Khorasani, R., & Karimi Karoyeh, A. (2016). Soil quality assessments in some Iranian saffron fields. Journal of Agricultural Science and Technology, 18(3), 865-878. http://jast.modares.ac.ir/article-23-1678-en.html
Ritung, S., Nugroho, K., Mulyani, A., & Suryani, E. (2011). Petunjuk teknis evaluasi lahan untuk komoditas pertanian (Edisi revisi). Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian, Bogor, 168.
Sahoo, J., Dass, A., Bhat, M., & Gouda, H. (2021). Land suitability assessment for improved land use planning in selected watersheds of Haryana. Journal of Environmental Biology, 42(2), 285-294. https://doi.org/10.22438/jeb/42/2/MRN-1402
Said, M. E. S., Ali, A. M., Borin, M., Abd-Elmabod, S. K., Aldosari, A. A., Khalil, M. M., & Abdel-Fattah, M. K. (2020). On the use of multivariate analysis and land evaluation for potential agricultural development of the northwestern coast of Egypt. Agronomy, 10(9), 1318. https://doi.org/10.3390/agronomy10091318
Sengupta, S., Mohinuddin, S., Arif, M., Sengupta, B., & Zhang, W. (2022). Assessment of agricultural land suitability using GIS and Fuzzy Analytical Hierarchy Process approach in Ranchi District, India. Geocarto International, 1-34. https://doi.org/10.1080/10106049.2022.2076925
Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., & McDowell, R. W. (2019). Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture. Geoderma, 352, 80-95. https://doi.org/10.1016/j.geoderma.2019.05.046
Sheikh, V., Salmani, H., Salman Mahiny, A., Ownegh, M., & Fathabadi, A. (2021). Land use optimization through bridging multiobjective optimization and multicriteria decision-making models (case study: Tilabad Watershed, Golestan Province, Iran). Natural Resource Modeling, 34(2), e12301. https://doi.org/10.1111/nrm.12301
Siebrecht, N. (2020). Sustainable agriculture and its implementation gap—Overcoming obstacles to implementation. Sustainability, 12(9), 3853. https://doi.org/10.3390/su12093853
Sys, C., Van Ranst, E., Debaveye, J., & Beernaert, F. (1993). Land Evaluation. Part III: crop requirements. Agricultural Publications No. 7, General Administration for Development Cooperation, Brussels, Belgium.
Taghizadeh-Mehrjardi, R., Nabiollahi, K., Rasoli, L., Kerry, R., & Scholten, T. (2020). Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy, 10(4), 573. https://doi.org/10.3390/agronomy10040573
Yang, X., Yang, Y., Wan, Y., Wu, R., Feng, D., & Li, K. (2021). Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Science of the Total Environment, 786, 147436. https://doi.org/10.1016/j.scitotenv.2021.147436
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zalhaf, A. S., Elboshy, B., Kotb, K. M., Han, Y., Almaliki, A. H., Aly, R. M., & Elkadeem, M. (2021). A high-resolution wind farms suitability mapping using GIS and fuzzy AHP approach: A national-level case study in Sudan. Sustainability, 14(1), 358. https://doi.org/10.3390/su14010358
Zhang, J., Su, Y., Wu, J., & Liang, H. (2015). GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Computers and Electronics in Agriculture, 114, 202-211. https://doi.org/10.1016/j.compag.2015.04.004
Refbacks
- There are currently no refbacks.