Biochar research advancement in Bangladesh: challenges and opportunities of biochar in improving soil health
Abstract
Globally, biochar research and its application for soil improvement have attracted the interest of many researchers, primarily environmental and soil scientists, in the last decade. But, a limited number of biochar research studies have been conducted in Bangladesh. Therefore, a comprehensive study on biochar research is necessary to find out the scope and opportunities of biochar application in the soils of Bangladesh. Generally, biochar can improve the physical, chemical, and biological properties of soils. It also has a significant role in greenhouse gas emissions. The contaminated soils can also be remediated through the judicious application of biochar. In Bangladesh, biochar application enhanced soil pH, organic matter, phosphorus availability, and agricultural production while decreasing soil acidification, microbial activity, and heavy metals mobility. Besides that, there were both positive and negative findings regarding nitrogen availability, greenhouse gas emissions, and heavy metal accumulation. However, this review includes the selection of feedstock, the advancement of pyrolysis technology, the characterization of biochar, and the agronomic and environmental benefits of biochar use. This paper also reviews biochar study and application activities in Bangladesh over the last decade. Further research directions have been suggested to ensure the beneficial and safe application of biochar to agricultural property.
Keywords
Full Text:
PDFReferences
Abedin, M. A., & Jahiruddin, M. (2015). Waste generation and management in Bangladesh: An overview. Asian Journal of Medical and Biological Research, 1(1), 114-120. https://doi.org/10.3329/ajmbr.v1i1.25507
Ahiduzzaman, M., & Sadrul Islam, A. K. M. (2016). Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. SpringerPlus, 5(1), 1248-1248. https://doi.org/10.1186/s40064-016-2932-8
Ahmed, F., Islam, M. S., & Iqbal, M. T. (2017). Biochar amendment improves soil fertility and productivity of mulberry plant. Eurasian Journal of Soil Science, 6(3), 226-237. https://doi.org/10.18393/ejss.291945
Ahmmed, S., Jahiruddin, M., Razia, S., Begum, R. A., Biswas, J. C., Rahman, A. S. M. M., . . . Satter, M. A. (2018). Fertilizer recommendation guide. Bangladesh Agricultural Research Council (BARC), Farmget, Dhaka, Bangladesh. http://barc.portal.gov.bd/sites/default/files/files/barc.portal.gov.bd/page/4adead4d_6e17_4d74_b5bd_e86e46c059ad/88c1738fe0618daef286ef3d27c95423.pdf
Al Mamun, S., Saha, S., Ferdush, J., Tusher, T. R., Abu-Sharif, M., Alam, M. F., . . . Parveen, Z. (2021). Cadmium contamination in agricultural soils of Bangladesh and management by application of organic amendments: evaluation of field assessment and pot experiments. Environmental Geochemistry and Health, 43(9), 3557-3582. https://doi.org/10.1007/s10653-021-00829-x
Alam, M. A., Rahman, M. M., Biswas, J. C., Akhter, S., Maniruzzaman, M., Choudhury, A. K., . . . Kalra, N. (2019). Nitrogen transformation and carbon sequestration in wetland paddy field of Bangladesh. Paddy and Water Environment, 17(4), 677-688. https://doi.org/10.1007/s10333-019-00693-7
Alam, M. O. (2017). The Economic Feasibility of Biochar Production and Utilization in Bangladesh. International Journal of Business, Social and Scientific Research, 6(1), 93-102. http://www.ijbssr.com/journal/details/the-economic-feasibility-of-biochar-production-and-utilization-in-bangladesh-14013244c
Alam, M. Z., Hoque, M. A., Ahammed, G. J., & Carpenter-Boggs, L. (2020). Effects of arbuscular mycorrhizal fungi, biochar, selenium, silica gel, and sulfur on arsenic uptake and biomass growth in Pisum sativum L. Emerging Contaminants, 6, 312-322. https://doi.org/10.1016/j.emcon.2020.08.001
Ali, M. A., Hoque, M. A., & Kim, P. J. (2013). Mitigating Global Warming Potentials of Methane and Nitrous Oxide Gases from Rice Paddies under different irrigation regimes. AMBIO, 42(3), 357-368. https://doi.org/10.1007/s13280-012-0349-3
Ali, M. A., Inubushi, K., Kim, P. J., & Amin, S. (2019). Management of Paddy Soil towards Low Greenhouse Gas Emissions and Sustainable Rice Production in the Changing Climatic Conditions. In D. Vázquez-Luna & M. d. C. Cuevas-Díaz (Eds.), Soil Contamination and Alternatives for Sustainable Development. IntechOpen. https://doi.org/10.5772/intechopen.83548
Ali, M. A., Kim, P. J., & Inubushi, K. (2015). Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils. Science of The Total Environment, 529, 140-148. https://doi.org/10.1016/j.scitotenv.2015.04.090
BBI. (2021). Bangladesh biochar initiative. https://www.biochar-bangladesh.org/
BBS. (2020). Yearbook of agricultural statistics. Bangladesh Bureau of Statistics (BBS), Statistics and Informatics Division (SID), Ministry of Planning, Government of the People’s Republic of Bangladesh. https://drive.google.com/file/d/1i279Wn0pD-4-4LJ0ERh5ZCl7qJH79aZx/view
Begum, K., Kuhnert, M., Yeluripati, J., Ogle, S., Parton, W., Kader, M. A., & Smith, P. (2018). Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land, 7(3), 82. https://www.mdpi.com/2073-445X/7/3/82
Dhar, S. A., Sakib, T. U., & Hilary, L. N. (2020). Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01116-y
Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. A. d., Melo, L. C. A., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLOS ONE, 12(5), e0176884. https://doi.org/10.1371/journal.pone.0176884
Ferdousi, N., & Imamul Huq, S. M. (2020). Arsenic Mitigation Approach in Soil by Some Indigenous Sources of Biochar Made at Low Pyrolysis Temperature. International Journal of Plant & Soil Science, 32(9), 1-25. https://doi.org/10.9734/ijpss/2020/v32i930330
Halder, P. K., Paul, N., & Beg, M. R. A. (2014). Assessment of biomass energy resources and related technologies practice in Bangladesh. Renewable and Sustainable Energy Reviews, 39, 444-460. https://doi.org/10.1016/j.rser.2014.07.071
Haque, M. M., Rahman, M. M., Morshed, M. M., Islam, M. S., & Afrad, M. S. I. (2019). Biochar on Soil Fertility and Crop Productivity. The Agriculturists, 17(1-2), 76-88. https://doi.org/10.3329/agric.v17i1-2.44698
Hasan, M. N., Bari, M. A., & Rahman, M. L. (2020). Soil fertility trends in Bangladesh 2010 to 2020. SRSRF project. Soil Resource Development Institute, Ministry of Agriculture, Dhaka, Bangladesh. http://www.srdi.gov.bd/sites/default/files/files/srdi.portal.gov.bd/publications/fffb5a10_884b_4f62_8c7c_8fff58550d90/2021-07-19-04-56-6ecec4307fbdf07b84753728879580b6.pdf
Hasnat, M., Rahman, M. M., Rahman, G. M., & Haque, M. M. (2018). Role of Nitrogen Fertilizer on Mineralization of Organic Materials. Proceedings on Biochar for food security, livelihood and combating climate change, Dhaka, Bangladesh.
Himel, M. T. F., Khatun, S., Rahman, M., & Nahian, A. T. (2019). A Prospective Assessment of Biomass Energy Resources: Potential, Technologies and Challenges in Bangladesh. Journal of Energy Research and Reviews, 3(4), 1-25. https://doi.org/10.9734/jenrr/2019/v3i430108
Hossain, M. F. (2006). Arsenic contamination in Bangladesh—An overview. Agriculture, Ecosystems & Environment, 113(1), 1-16. https://doi.org/10.1016/j.agee.2005.08.034
Hossain, M. I., Hossain, M. I., Rahman, M. Z., Malek, M., Shah, M., & Chowdhury, N. (2021). Effect of fertilizer doses with biochar on soil fertility and crop productivity of wheat-maize-rice cropping pattern in drought prone area. International Journal of Biosciences, 18(4), 93–100. https://innspub.net/download/?target=wp-content/uploads/2021/04/IJB-Vol-18-No-4-p-93-100.pdf_26604
Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., . . . Siddique, K. H. M. (2017). Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 17(3), 685-716. https://doi.org/10.1007/s11368-016-1360-2
Iqbal, M. T. (2017). Utilization of biochar in improving yield of wheat in Bangladesh. Bulgarian Journal of Soil Science, 2(1), 53-74. http://www.bsss.bg/issues/Issue1_2017/Paper5_2017_1.pdf
Islam, M., Halder, M., Siddique, M. A. B., Razir, S. A. A., Sikder, S., & Joardar, J. C. (2019). Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture. International Journal of Recycling of Organic Waste in Agriculture, 8(1), 407-413. https://doi.org/10.1007/s40093-019-00313-8
Islam, M. M., Karim, M. R., Zheng, X., & Li, X. (2018). Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical Review. International journal of environmental research and public health, 15(12), 2825. https://doi.org/10.3390/ijerph15122825
James, A., Sánchez, A., Prens, J., & Yuan, W. (2022). Biochar from agricultural residues for soil conditioning: Technological status and life cycle assessment. Current Opinion in Environmental Science & Health, 25, 100314. https://doi.org/10.1016/j.coesh.2021.100314
Karim, M. R., Halim, M. A., Gale, N. V., & Thomas, S. C. (2020). Biochar Effects on Soil Physiochemical Properties in Degraded Managed Ecosystems in Northeastern Bangladesh. Soil Systems, 4(4), 69. https://www.mdpi.com/2571-8789/4/4/69
Khan, K. T., Chowdhury, M. T. A., & Huq, S. M. I. (2016a). Application of biochar and fate of soil nutrients. Bangladesh Journal of Scientific Research, 27(1), 11-25. https://doi.org/10.3329/bjsr.v27i1.26221
Khan, K. T., Chowdhury, M. T. A., & Huq, S. M. I. (2016b). Effects of biochar on the fate of the heavy metals Cd, Cu, Pb and Zn in soil. Bangladesh Journal of Scientific Research, 28(1), 17-26. https://doi.org/10.3329/bjsr.v28i1.26240
Khan, T. F., & Didar-Ur-Alam, M. (2018). Effects of biochar on legume-Rhizobium symbiosis in soil. Bangladesh Journal of Botany, 47(4), 945-952. https://doi.org/10.3329/bjb.v47i4.47390
Khan, T. F., & Imamul Huq, S. M. (2014). Effect of Biochar on the Abundance of Soil Bacteria. Microbiology Research Journal International, 14(8). https://doi.org/10.9734/BMRJ/2014/9334
Laghari, M., Mirjat, M. S., Hu, Z., Fazal, S., Xiao, B., Hu, M., . . . Guo, D. (2015). Effects of biochar application rate on sandy desert soil properties and sorghum growth. CATENA, 135, 313-320. https://doi.org/10.1016/j.catena.2015.08.013
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., . . . Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and Soil, 373(1), 583-594. https://doi.org/10.1007/s11104-013-1806-x
Mahbubul Islam, M., Shah Jalal, M., Shoriful Islam, M., Hossain, M. M., Işik, M., & Iqbal, M. T. (2020). Akha biochar enhances soil fertility and productivity of red amaranth plant. Net Journal of Agricultural Science, 8(1), 1-7. http://www.netjournals.org/z_NJAS_20_011.html
Mahmud, K., Chowhdhury, M., Noor, N., & Imamul Huq, S. (2014). Effects of different sources of biochar application on the emission of a number of gases from soil. Canadian Journal of Pure and Applied Sciences, 8(2), 2813-2824. http://www.cjpas.net/wp-content/uploads/pdfs/8/2/Vol.%208(2)%20June%202014_01.pdf
Mannan, M. A., Mia, S., Halder, E., & Dijkstra, F. A. (2021). Biochar application rate does not improve plant water availability in soybean under drought stress. Agricultural Water Management, 253, 106940. https://doi.org/10.1016/j.agwat.2021.106940
Masud, M. M., Baquy, M. A.-A., Akhter, S., Sen, R., Barman, A., & Khatun, M. R. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202, 110865. https://doi.org/10.1016/j.ecoenv.2020.110865
Mete, F. Z., Mia, S., Dijkstra, F. A., Abuyusuf, M., & Hossain, A. S. M. I. (2015). Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in an Alkaline Soil. Pedosphere, 25(5), 713-719. https://doi.org/10.1016/S1002-0160(15)30052-7
Mia, S., Abuyusuf, M., Sattar, M., Islam, A., Hiemstra, T., & Jeffery, S. (2014). Biochar amendment for high nitrogen and phosphorous bioavailability and its potentiality of use in Bangladesh agriculture: a review. Journal of The Patuakhali Science and Technology University, 5(1), 145-156. https://www.researchgate.net/publication/275670450_BIOCHAR_AMENDMENT_FOR_HIGH_NITROGEN_AND_PHOSPHOROUS_BIOAVAILABILITY_AND_ITS_POTENTIALITY_OF_USE_IN_BANGLADESH_AGRICULTURE_A_REVIEW
Mia, S., Uddin, M. E., Kader, M. A., Ahsan, A., Mannan, M. A., Hossain, M. M., & Solaiman, Z. M. (2018). Pyrolysis and co-composting of municipal organic waste in Bangladesh: A quantitative estimate of recyclable nutrients, greenhouse gas emissions, and economic benefits. Waste Management, 75, 503-513. https://doi.org/10.1016/j.wasman.2018.01.038
Mia, S., Uddin, N., Mamun Hossain, S. A. A., Amin, R., Mete, F. Z., & Hiemstra, T. (2015). Production of Biochar for Soil Application: A Comparative Study of Three Kiln Models. Pedosphere, 25(5), 696-702. https://doi.org/10.1016/S1002-0160(15)30050-3
Murad, K. F. I., Alam, M. K., M.J., A., & Sabuz, A. A. (2018). Biochar to Enhance Productivity of Tomato Cultivated under Deficit Irrigation. Potentiality of Biochar to Enhance Productivity of Tomato Cultivated under Deficit Irrigation, Dhaka, Bangladesh.
Naher, U. A., Biswas, J. C., Maniruzzaman, M., Khan, F. H., Sarkar, M. I. U., Jahan, A., . . . Kabir, M. S. (2021). Bio-Organic Fertilizer: A Green Technology to Reduce Synthetic N and P Fertilizer for Rice Production [Original Research]. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.602052
Nazrul Islam, S., Rahman, M. L., Tareq, M. Z., Mostofa, B., Karim, M. M., Sultana, A., & Sadat, M. A. (2021). Nutrient combination with biochar: Improving yield and quality of jute seed. Malaysian Journal of Sustainable Agriculture, 5(1), 43–50. https://doi.org/10.26480/mjsa.01.2021.43.50
Nguyen, T. T. N., Wallace, H. M., Xu, C.-Y., Zwieten, L., Weng, Z. H., Xu, Z., . . . Bai, S. H. (2018). The effects of short term, long term and reapplication of biochar on soil bacteria. Science of The Total Environment, 636, 142-151. https://doi.org/10.1016/j.scitotenv.2018.04.278
Noor, N., Mahmud, K., Chowdhury, M. T. A., & Huq, S. M. I. (2015). The use of biochar as ameliorator for soil arsenic. Dhaka University Journal of Biological Sciences, 24(2), 111-119. https://doi.org/10.3329/dujbs.v24i2.46318
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., . . . Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3-22. https://doi.org/10.1007/s42773-019-00009-2
Piash, M. I., Hossain, M. F., Anyanwu, I. N., Al Mamun, S., & Parveen, Z. (2018). Effect of biochar application on soil carbon fluxes from sequential dry and wet cultivation systems. American Journal of Climate Change, 7(1), 40-53. https://doi.org/10.4236/ajcc.2018.71005
Piash, M. I., Hossain, M. F., & Parveen, Z. (2017). Physico-chemical properties and nutrient content of some slow pyrolysis biochars produced from different feedstocks. Bangladesh Journal of Scientific Research, 29(2), 111-122. https://doi.org/10.3329/bjsr.v29i2.32327
Piash, M. I., Hossain, M. F., & Parveen, Z. (2019). Effect of biochar and fertilizer application on the growth and nutrient accumulation of rice and vegetable in two contrast soils. Acta Scientific Agriculture, 3(3), 74-83. https://actascientific.com/ASAG/pdf/ASAG-03-0361.pdf
Rabbani, G., Hossain, M. F., & Parveen, Z. (2021). Effect of Waste Derived Biochar on Incubated Acid Soils of Bangladesh. Journal of Environmental Science Current Research, 4, 1-11. https://www.researchgate.net/publication/351514489_Effect_of_Waste_Derived_Biochar_on_Incubated_Acid_Soil_of_Bangladesh
Rahman, F., Rahman, M. M., Rahman, G. K. M. M., Saleque, M. A., Hossain, A. T. M. S., & Miah, M. G. (2016). Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice–rice cropping pattern. Carbon Management, 7(1-2), 41-53. https://doi.org/10.1080/17583004.2016.1166425
Rahman, M. A., Jahiruddin, M., Kader, M. A., Islam, M. R., & Solaiman, Z. M. (2021). Sugarcane bagasse biochar increases soil carbon sequestration and yields of maize and groundnut in charland ecosystem. Archives of Agronomy and Soil Science, 1-14. https://doi.org/10.1080/03650340.2021.1892651
Rahman, M. S., Karim, M. R., Barman, J. K., & Islam, M. M. (2020). Farmers’ Attitude towards Production and Utilization of Biochar as Ecofriendly Practice. Advances in Research, 21(2), 38-46. https://doi.org/10.9734/air/2020/v21i230189
Rasul, M., Cho, J., Shin, H.-S., & Hur, J. (2022). Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review. Science of The Total Environment, 805, 150304. https://doi.org/10.1016/j.scitotenv.2021.150304
Roy, T. S., Rahaman, M. T., Chakraborty, R., Mostofa, M., & Rahaman, M. S. (2020). Effect of Biochar Application as a Soil Amendment on Growth and Yield of Sesame (Sesamumindicuml.). Bangladesh Agronomy Journal, 22(2), 113-127. https://doi.org/10.3329/baj.v22i2.47640
Sani, M. N. H., Hasan, M., Uddain, J., & Subramaniam, S. (2020). Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Annals of Agricultural Sciences, 65(1), 107-115. https://doi.org/10.1016/j.aoas.2020.06.003
Seow, Y. X., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Ibrahim, M. L., & Ghasemi, M. (2022). A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering, 10(1), 107017. https://doi.org/10.1016/j.jece.2021.107017
Shamim, M., Saha, N., & Hye, F. B. (2018). Effect of biochar on seed germination, early growth of Oryza sativa L. and soil nutrients. Tropical Plant Research, 5(3), 336-342. https://doi.org/10.22271/tpr.2018.v5.i3.042
Sharna, S. B. Z., Islam, S., Huda, A., Jahiruddin, M., & Islam, M. R. (2021). Effects of Prilled Urea, Urea Briquettes and NPK Briquettes on the Growth, Yield and Nitrogen use Efficiency of BRRI Dhan48. Asian Journal of Soil Science and Plant Nutrition, 7(3), 19-27. https://doi.org/10.9734/ajsspn/2021/v7i330114
Shashi, M. A., Mannan, M. A., Islam, M. M., & Rahman, M. M. (2018). Impact of Rice Husk Biochar on Growth, Water Relations and Yield of Maize (Zea mays L.) under Drought Condition. The Agriculturists, 16(02), 93-101. https://doi.org/10.3329/agric.v16i02.40347
Sheng, Y., & Zhu, L. (2018). Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of The Total Environment, 622-623, 1391-1399. https://doi.org/10.1016/j.scitotenv.2017.11.337
Shil, N. C., Saleque, M. A., Islam, M. R., & Jahiruddin, M. (2016). Soil fertility status of some of the intensive crop growing areas under major agroecological zones of Bangladesh. Bangladesh Journal of Agricultural Research, 41(4), 735-757. https://doi.org/10.3329/bjar.v41i4.30705
Sikder, S., & Joardar, J. C. (2019). Biochar production from poultry litter as management approach and effects on plant growth. International Journal of Recycling of Organic Waste in Agriculture, 8(1), 47-58. https://doi.org/10.1007/s40093-018-0227-5
Solaiman, Z. M., & Anawar, H. M. (2015). Application of Biochars for Soil Constraints: Challenges and Solutions. Pedosphere, 25(5), 631-638. https://doi.org/10.1016/S1002-0160(15)30044-8
Sutradhar, I., Jackson-deGraffenried, M., Akter, S., McMahon, S. A., Waid, J. L., Schmidt, H.-P., . . . Gabrysch, S. (2021). Introducing urine-enriched biochar-based fertilizer for vegetable production: acceptability and results from rural Bangladesh. Environment, Development and Sustainability, 23(9), 12954-12975. https://doi.org/10.1007/s10668-020-01194-y
Tasnim, U. F., Shammi, M., Uddin, M. K., & Akbor., M. A. (2021). Effect of Biochar Amended Vermicomposting of Food and Beverage Industry Sludge along with Cow dung and Seed Germination Bioassay. Pollution, 7(2), 355-365. https://doi.org/10.22059/poll.2021.315530.961
Us Sakib, T., & Aninda Dhar, S. (2018). An opportunity towards poultry litter management in Bangladesh: poultry Litter biochar. Proceedings of the 5th International Conference on Natural Sciences and Technology, Chittagong, Bangladesh.
Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, 8(3), 512-523. https://doi.org/10.1111/gcbb.12266
Wu, L., Zheng, H., & Wang, X. (2021). Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 294, 112993. https://doi.org/10.1016/j.jenvman.2021.112993
Wu, Q., Lian, R., Bai, M., Bao, J., Liu, Y., Li, S., . . . Xu, Q. (2021). Biochar co-application mitigated the stimulation of organic amendments on soil respiration by decreasing microbial activities in an infertile soil. Biology and Fertility of Soils, 57(6), 793-807. https://doi.org/10.1007/s00374-021-01574-0
Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of The Total Environment, 659, 473-490. https://doi.org/10.1016/j.scitotenv.2018.12.400
Zhang, Y., Wang, J., & Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. CATENA, 202, 105284. https://doi.org/10.1016/j.catena.2021.105284
Refbacks
- There are currently no refbacks.