Spore reproduction, glomalin content, and maize growth on mycorrhizal pot culture using acid mineral soil-based media

Vita Ratri Cahyani, Dianing Wahyu Kinasih, Purwanto Purwanto, Jauhari Syamsiyah


Arbuscular mycorrhiza (AM) is known as multifunctional fungi for plant helpers under adverse conditions. However, studies that focused on the production strategy of AM biofertilizers with specific targets related to the soil limitations are limited. This study aimed to examine AM inocula from several sources using various compositions of acid mineral soil-based media and maize hosts in pot cultures to obtain effective AM inocula to handle the phosphor (P) limitations in acid mineral soils. Zeolite and Inceptisols were used as comparing media. The study utilized a completely randomized factorial design with two factors, namely C = media composition (C0: zeolite; C1: representative media of Alfisols; C2: typical media of a mixture of Alfisols, Oxisols, and Ultisols; C3: typical media with the addition of Bio-RP nutrition; C4: Inceptisols) and I = AM inoculum source (I0: without inoculum; I1: inoculum from Alfisols; I2: mixed inoculum from Alfisols, Ultisols, and Oxisols; I3: mixed inoculum from eight soil types), and six replications per treatment combination. The AM cultures on acid mineral soil-based media, which yielded the highest mycorrhizal infection, spore reproduction, and glomalin content, were C1I2 and C3I2, while the highest maize growth and P concentration were obtained with C1I1, CII2, C2I1, and C3I2. Compared to all the treatments, C1I1 and C1I2 are the superior AM cultures. Further study is necessary to confirm the effectiveness of AM cultures.


Biofertilizer; Mycorrhizal effectiveness; P concentration; P limitations; Pot culture formulation

Full Text:



Aguilera, P., Marín, C., Oehl, F., Godoy, R., Borie, F., & Cornejo, P. (2017). Selection of aluminum tolerant cereal genotypes strongly influences the arbuscular mycorrhizal fungal communities in an acidic Andosol. Agriculture, Ecosystems & Environment, 246, 86-93. https://doi.org/10.1016/j.agee.2017.05.031

Andrade, F. R., Nóbrega, J. C. A., Nóbrega, R. S. A., Lustosa Filho, J. F., Zuffo, A. M., & Moreira, F. M. d. S. (2018). Mycorrhization stimulant in soybean associated with phosphate fertilization in oxisols. Revista Caatinga, 31, 823-831. https://doi.org/10.1590/1983-21252018v31n404rc

Antoniadis, V., Koliniati, R., Efstratiou, E., Golia, E., & Petropoulos, S. (2016). Effect of soils with varying degree of weathering and pH values on phosphorus sorption. CATENA, 139, 214-219. https://doi.org/10.1016/j.catena.2016.01.008

Arraudah, R., Bertham, Y. H., Pujiwati, H., Murcitro, B. G., & Sukarjo, E. I. (2020). Application of Humic Acid and Arbuscular Mycorrhizal Fungi to Increase Growth and Yields of Soybean in Ultisol. TERRA: Journal of Land Restoration, 3(2), 56-64. https://doi.org/10.31186/terra.3.2.56-64

Bertagnoli, B. G. P., Oliveira, J. F., Barbosa, G. M. C., & Colozzi Filho, A. (2020). Poultry litter and liquid swine slurry applications stimulate glomalin, extraradicular mycelium production, and aggregation in soils. Soil and Tillage Research, 202, 104657. https://doi.org/10.1016/j.still.2020.104657

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220(4), 1108-1115. https://doi.org/https://doi.org/10.1111/nph.14976

Cahyani, V. R., Alfin, M. R., & Hanifah, N. (2019). Screening of Arbuscular Mycorrhiza Isolated from Rhizosphere of Elephant Grass from Seven Soil Types for Biofertilizer in Zeolite Pot Culture. Bulgarian Journal of Agricultural Science, 25(4), 724-731. https://www.agrojournal.org/25/04-15.pdf

Cahyani, V. R., Suryanti, Setiawan, D. F., Suntoro, Minardi, S., Purwanto, & Rahayu. (2019). Examination of mycorrhizal inoculum for improving maize tolerance to water stress in pot culture using zeolite and Andisol. IOP Conference Series: Earth and Environmental Science, 393(1), 012018. https://doi.org/10.1088/1755-1315/393/1/012018

Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., . . . Ahammed, G. J. (2017). Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings [Original Research]. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02516

Crossay, T., Cavaloc, Y., Majorel, C., Redecker, D., Medevielle, V., & Amir, H. (2020). Combinations of different arbuscular mycorrhizal fungi improve fitness and metal tolerance of sorghum in ultramafic soil. Rhizosphere, 14, 100204. https://doi.org/10.1016/j.rhisph.2020.100204

Driver, J. D., Holben, W. E., & Rillig, M. C. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37(1), 101-106. https://doi.org/10.1016/j.soilbio.2004.06.011

El Maaloum, S., Elabed, A., Alaoui-Talibi, Z. E., Meddich, A., Filali-Maltouf, A., Douira, A., . . . El Modafar, C. (2020). Effect of Arbuscular Mycorrhizal Fungi and Phosphate-Solubilizing Bacteria Consortia Associated with Phospho-Compost on Phosphorus Solubilization and Growth of Tomato Seedlings (Solanum lycopersicum L.). Communications in Soil Science and Plant Analysis, 51(5), 622-634. https://doi.org/10.1080/00103624.2020.1729376

Friese, C. F., & Allen, M. F. (1991). The Spread of Va Mycorrhizal Fungal Hyphae in the Soil: Inoculum Types and External Hyphal Architecture. Mycologia, 83(4), 409-418. https://doi.org/10.1080/00275514.1991.12026030

Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0

Gheisari Zardak, S., Movahhedi Dehnavi, M., Salehi, A., & Gholamhoseini, M. (2017). Responses of field grown fennel (Foeniculum vulgare Mill.) to different mycorrhiza species under varying intensities of drought stress. Journal of Applied Research on Medicinal and Aromatic Plants, 5, 16-25. https://doi.org/10.1016/j.jarmap.2016.09.004

Giovannetti, M., & Mosse, B. (1980). An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytologist, 84(3), 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390-399. https://doi.org/10.1111/sum.12270

He, J.-D., Chi, G.-G., Zou, Y.-N., Shu, B., Wu, Q.-S., Srivastava, A. K., & Kuča, K. (2020). Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology, 154, 103592. https://doi.org/10.1016/j.apsoil.2020.103592

He, X., Li, Y., & Zhao, L. (2010). Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biology and Biochemistry, 42(8), 1313-1319. https://doi.org/10.1016/j.soilbio.2010.03.022

Hendry, G. A. F., & Grime, J. P. (1993). Methods in Comparative Plant Ecology. Springer Dordrecht. https://doi.org/10.1007/978-94-011-1494-3

Ianson, D. C., & Allen, M. F. (1986). The Effects of Soil Texture on Extraction of Vesicular-Arbuscular Mycorrhizal Fungal Spores from Arid Sites. Mycologia, 78(2), 164-168. https://doi.org/10.1080/00275514.1986.12025227

Ji, L., Tan, W., & Chen, X. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil and Tillage Research, 185, 1-8. https://doi.org/10.1016/j.still.2018.08.010

Kamran, M. A., Jiang, J., Li, J.-y., Shi, R.-y., Mehmood, K., Baquy, M. A.-A., & Xu, R.-k. (2018). Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils. Arabian Journal of Geosciences, 11(11), 272. https://doi.org/10.1007/s12517-018-3616-1

Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). How Do Crop Plants Tolerate Acid Soils? Mechanisms of Aluminum Tolerance and Phosphorous Efficiency. Annual Review of Plant Biology, 55(1), 459-493. https://doi.org/10.1146/annurev.arplant.55.031903.141655

Kumar, A., Suri, V. K., & Choudhary, A. K. (2014). Influence of Inorganic Phosphorus, VAM Fungi, and Irrigation Regimes on Crop Productivity and Phosphorus Transformations in Okra (Abelmoschus esculentus L.)–Pea (Pisum sativum L.) Cropping System in an Acid Alfisol. Communications in Soil Science and Plant Analysis, 45(7), 953-967. https://doi.org/10.1080/00103624.2013.874025

Laxminarayana, K. (2016). Response of Mycorrhiza, Organic Sources, Secondary and Micro Nutrients on Soil Microbial Activities and Yield Performance of Colocasia (Colocasia esculenta L.) in Alfisols. Communications in Soil Science and Plant Analysis, 47(6), 775-786. https://doi.org/10.1080/00103624.2016.1146893

Lombardo, S., Scavo, A., Abbate, C., Pandino, G., Parisi, B., & Mauromicale, G. (2021). Mycorrhizal Inoculation Improves Mineral Content of Organic Potatoes Grown under Calcareous Soil. Agriculture, 11(4), 333. https://doi.org/10.3390/agriculture11040333

Lopes, J. I., Arrobas, M., Raimundo, S., Gonçalves, A., Brito, C., Martins, S., . . . Rodrigues, M. Â. (2022). Photosynthesis, Yield, Nutrient Availability and Soil Properties after Biochar, Zeolites or Mycorrhizal Inoculum Application to a Mature Rainfed Olive Orchard. Agriculture, 12(2), 171. https://doi.org/10.3390/agriculture12020171

Lopes, J. I., Correia, C. M., Gonçalves, A., Silva, E., Martins, S., Arrobas, M., & Rodrigues, M. Â. (2021). Arbuscular Mycorrhizal Fungi Inoculation Reduced the Growth of Pre-Rooted Olive Cuttings in a Greenhouse. Soil Systems, 5(2), 30. https://doi.org/10.3390/soilsystems5020030

Lovelock, C. E., Wright, S. F., & Nichols, K. A. (2004). Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rain forest soil. Soil Biology and Biochemistry, 36(6), 1009-1012. https://doi.org/10.1016/j.soilbio.2004.02.010

Ma, J., Wang, W., Yang, J., Qin, S., Yang, Y., Sun, C., . . . Huang, J. (2022). Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biology, 22(1), 64. https://doi.org/10.1186/s12870-021-03370-2

Mehta, P., Sharma, R., Putatunda, C., & Walia, A. (2019). Endophytic Fungi: Role in Phosphate Solubilization. In B. P. Singh (Ed.), Advances in Endophytic Fungal Research: Present Status and Future Challenges (pp. 183-209). Springer International Publishing. https://doi.org/10.1007/978-3-030-03589-1_9

Mora, E., Lopez-Hernández, D., & Toro, M. (2019). Arbuscular Mycorrhizae and PGPR Applications in Tropical Savannas. In D. Zúñiga-Dávila, F. González-Andrés, & E. Ormeño-Orrillo (Eds.), Microbial Probiotics for Agricultural Systems: Advances in Agronomic Use (pp. 169-177). Springer International Publishing. https://doi.org/10.1007/978-3-030-17597-9_11

Mulyani, A., & Sarwani, M. (2013). Karakteristik dan potensi lahan sub optimal untuk pengembangan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 7(1), 47-55. http://ejurnal.litbang.pertanian.go.id/index.php/jsl/article/view/6429

Ortas, I., Sari, N., Akpinar, Ç., & Yetisir, H. (2011). Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae, 128(2), 92-98. https://doi.org/10.1016/j.scienta.2010.12.014

Pan, X.-Y., Li, J.-Y., Deng, K.-Y., Xu, R.-K., & Shen, R.-F. (2019). Four-year effects of soil acidity amelioration on the yields of canola seeds and sweet potato and N fertilizer efficiency in an ultisol. Field Crops Research, 237, 1-11. https://doi.org/10.1016/j.fcr.2019.03.019

Pansu, M., & Gautheyrou, J. (2006). Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. https://doi.org/10.1007/978-3-540-31211-6

Peng, S., Guo, T., & Liu, G. (2013). The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biology and Biochemistry, 57, 411-417. https://doi.org/10.1016/j.soilbio.2012.10.026

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-IN118. https://doi.org/10.1016/S0007-1536(70)80110-3

Reyes, H. A., Ferreira, P. F. A., Silva, L. C., da Costa, M. G., Nobre, C. P., & Gehring, C. (2019). Arbuscular mycorrhizal fungi along secondary forest succession at the eastern periphery of Amazonia: Seasonal variability and impacts of soil fertility. Applied Soil Ecology, 136, 1-10. https://doi.org/10.1016/j.apsoil.2018.12.013

Salgado, F. H. M., Moreira, F. M. d. S., Paulino, H. B., Siqueira, J. O., & Carneiro, M. A. C. (2016). Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants. Pesquisa Agropecuária Tropical, 46(4), 367-373. https://doi.org/10.1590/1983-40632016v4640282

Santander, C., Aroca, R., Ruiz-Lozano, J. M., Olave, J., Cartes, P., Borie, F., & Cornejo, P. (2017). Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza, 27(7), 639-657. https://doi.org/10.1007/s00572-017-0784-x

Sarma, B., Borkotoki, B., Narzari, R., Kataki, R., & Gogoi, N. (2017). Organic amendments: Effect on carbon mineralization and crop productivity in acidic soil. Journal of Cleaner Production, 152, 157-166. https://doi.org/10.1016/j.jclepro.2017.03.124

Seguel, A., Cumming, J., Cornejo, P., & Borie, F. (2016). Aluminum tolerance of wheat cultivars and relation to arbuscular mycorrhizal colonization in a non-limed and limed Andisol. Applied Soil Ecology, 108, 228-237. https://doi.org/10.1016/j.apsoil.2016.08.014

Sharifi, Z., Azadi, N., Rahimi, S., & Certini, G. (2018). The response of glomalin-related soil proteins to fire or tillage. Geoderma, 329, 65-72. https://doi.org/10.1016/j.geoderma.2018.05.008

Shi, R.-y., Hong, Z.-n., Li, J.-y., Jiang, J., Baquy, M. A.-A., Xu, R.-k., & Qian, W. (2017). Mechanisms for Increasing the pH Buffering Capacity of an Acidic Ultisol by Crop Residue-Derived Biochars. Journal of Agricultural and Food Chemistry, 65(37), 8111-8119. https://doi.org/10.1021/acs.jafc.7b02266

Singh, P. K., Singh, M., & Tripathi, B. N. (2013). Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250(3), 663-669. https://doi.org/10.1007/s00709-012-0453-z

Smith, S. E., & Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology, 62(1), 227-250. https://doi.org/10.1146/annurev-arplant-042110-103846

Souza, T. (2015). Handbook of arbuscular mycorrhizal fungi. Springer Cham. https://doi.org/10.1007/978-3-319-24850-9

Steinberg, P. D., & Rillig, M. C. (2003). Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology and Biochemistry, 35(1), 191-194. https://doi.org/10.1016/S0038-0717(02)00249-3

Suri, V. K., & Choudhary, A. K. (2013). Effect of Vesicular Arbuscular–Mycorrhizal Fungi and Phosphorus Application through Soil-Test Crop Response Precision Model on Crop Productivity, Nutrient Dynamics, and Soil Fertility in Soybean–Wheat–Soybean Crop Sequence in an Acidic Alfisol. Communications in Soil Science and Plant Analysis, 44(13), 2032-2041. https://doi.org/10.1080/00103624.2013.783921

Suri, V. K., & Choudhary, A. K. (2014). Comparative Performance of Geographical Isolates of Glomus mosseae in Field Crops under Low-Input Intensive P-Deficient Acid Alfisol. Communications in Soil Science and Plant Analysis, 45(1), 101-110. https://doi.org/10.1080/00103624.2013.849726

Syamsiyah, J., Sunarminto, B. H., Hanudin, E., & Widada, J. (2014). Pengaruh Inokulasi Jamur Mikoriza Arbuskula terhadap Glomalin, Pertumbuhan dan Hasil Padi [Glomalin; Mycorrhizae; nutrient uptake; rice yield]. Sains Tanah - Journal of Soil Science and Agroclimatology, 11(1), 39-46. https://doi.org/10.15608/stjssa.v11i1.214

Vos, C., Schouteden, N., van Tuinen, D., Chatagnier, O., Elsen, A., De Waele, D., . . . Gianinazzi-Pearson, V. (2013). Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biology and Biochemistry, 60, 45-54. https://doi.org/10.1016/j.soilbio.2013.01.013

Wheal, M. S., Fowles, T. O., & Palmer, L. T. (2011). A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements [10.1039/C1AY05430A]. Analytical Methods, 3(12), 2854-2863. https://doi.org/10.1039/C1AY05430A

Wright, S. F., Upadhyaya, A., & Buyer, J. S. (1998). Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry, 30(13), 1853-1857. https://doi.org/10.1016/S0038-0717(98)00047-9

Wu, Q.-S., Cao, M.-Q., Zou, Y.-N., & He, X.-h. (2014). Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports, 4(1), 5823. https://doi.org/10.1038/srep05823

Xiao, L., Zhang, Y., Li, P., Xu, G., Shi, P., & Zhang, Y. (2019). Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma, 334, 1-8. https://doi.org/10.1016/j.geoderma.2018.07.043

Zarcinas, B. A., Cartwright, B., & Spouncer, L. R. (1987). Nitric acid digestion and multi‐element analysis of plant material by inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis, 18(1), 131-146. https://doi.org/10.1080/00103628709367806

Zare-Maivan, H., Khanpour-Ardestani, N., & Ghanati, F. (2017). Influence of mycorrhizal fungi on growth, chlorophyll content, and potassium and magnesium uptake in maize. Journal of Plant Nutrition, 40(14), 2026-2032. https://doi.org/10.1080/01904167.2017.1346119

Zhang, Z., Mallik, A., Zhang, J., Huang, Y., & Zhou, L. (2019). Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates. Soil and Tillage Research, 194, 104340. https://doi.org/10.1016/j.still.2019.104340

Zhu, X., Song, F., Liu, S., & Liu, F. (2016). Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza, 26(2), 133-140. https://doi.org/10.1007/s00572-015-0654-3


  • There are currently no refbacks.