Soil quality status under Hazton’s paddy farming: A case study in Banyumas Regency, Indonesia

Supriyadi Supriyadi, Reni Ustiatik, Brilliant Mukti, Slamet Minardi, Hery Widijanto, Muchammad Bima Gegana Sakti

Abstract

Soil quality is the ability of the soil to perform its function, such as providing nourishment to the plants. However, intensive paddy farming, such as Hazton’s paddy farming method, is suspected to deteriorate soil quality status and degrade land sustainability. This study aimed to analyze soil quality under Hazton’s paddy farming. This study was conducted on paddy fields in Banyumas Regency using a randomized block design with treatment consisting of 1) conventional method as a control, 2) Hazton’s method + organic fertilizer, 3) Hazton’s method + organic fertilizer + decomposer, and 4) Hazton’s method + organic fertilizer + decomposer + leaf fertilizer. Soil quality was determined according to a minimum data set (MDS) that consisted of organic C, pH, total N, available phosphorus (P) and potassium (K), base saturation (BS), cation exchange capacity (CEC), bacterial density, soil respiration, and C/N ratio. The MDS was scored and calculated using the soil quality index formula and then classified from very low to very high (<0.19-1). This study highlighted that the soil quality in paddy farm using Hazton’s method in Banyumas Regency ranged from low (0.444) to very low (0.308). The application of organic fertilizer is not sufficient enough to refill the nutrient pool equal to harvested plant biomass. This leads to soil quality deterioration and affects land sustainability. Therefore, yield and biomass production should be included as soil quality indicators in future studies. Additionally, further soil degradation can be avoided by continuously assessing soil quality and the necessary conservation measures for preventing and minimizing further land degradation can be applied.

Keywords

Nutrients deficiency; Food security; Intensive management; Land degradation; Overburdened land

Full Text:

PDF

References

Ali, M. A., Inubushi, K., Kim, P. J., & Amin, S. (2019). Management of Paddy Soil towards Low Greenhouse Gas Emissions and Sustainable Rice Production in the Changing Climatic Conditions. In D. Vázquez-Luna & M. d. C. Cuevas-Díaz (Eds.), Soil Contamination and Alternatives for Sustainable Development. IntechOpen. https://doi.org/10.5772/intechopen.83548

Anup, K. C., & Ghimire, A. (2019). Soil Quality Status in Different Region of Nepal. In D. G. Panpatte & Y. K. Jhala (Eds.), Soil Fertility Management for Sustainable Development (pp. 81-99). Springer Singapore. https://doi.org/10.1007/978-981-13-5904-0_6

Aryal, D. R., De Jong, B. H. J., Mendoza-Vega, J., Ochoa-Gaona, S., & Esparza-Olguín, L. (2017). Soil Organic Carbon Stocks and Soil Respiration in Tropical Secondary Forests in Southern Mexico. In D. J. Field, C. L. S. Morgan, & A. B. McBratney (Eds.), Global Soil Security (pp. 153-165). Springer International Publishing. https://doi.org/10.1007/978-3-319-43394-3_14

Bhattacharyya, P., Bisen, J., Bhaduri, D., Priyadarsini, S., Munda, S., Chakraborti, M., Adak, T., Panneerselvam, P., Mukherjee, A. K., Swain, S. L., Dash, P. K., Padhy, S. R., Nayak, A. K., Pathak, H., Kumar, S., & Nimbrayan, P. (2021). Turn the wheel from waste to wealth: Economic and environmental gain of sustainable rice straw management practices over field burning in reference to India. Science of The Total Environment, 775, 145896. https://doi.org/10.1016/j.scitotenv.2021.145896

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030

Delgado, J. A., Barrera Mosquera, V. H., Alwang, J. R., Villacis-Aveiga, A., Cartagena Ayala, Y. E., Neer, D., Monar, C., & Escudero López, L. O. (2021). Chapter Five - Potential use of cover crops for soil and water conservation, nutrient management, and climate change adaptation across the tropics. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 165, pp. 175-247). Academic Press. https://doi.org/10.1016/bs.agron.2020.09.003

Domínguez-Haydar, Y., Velásquez, E., Carmona, J., Lavelle, P., Chavez, L. F., & Jiménez, J. J. (2019). Evaluation of reclamation success in an open-pit coal mine using integrated soil physical, chemical and biological quality indicators. Ecological Indicators, 103, 182-193. https://doi.org/10.1016/j.ecolind.2019.04.015

Elahi, E., Weijun, C., Zhang, H., & Nazeer, M. (2019). Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy, 83, 461-474. https://doi.org/10.1016/j.landusepol.2019.02.023

Eviati, & Sulaeman. (2009). Analisis Kimia Tanah, Air, Pupuk, dan Tanaman (B. H. Prasetyo, D. Santoso, & L. R. Widowati, Eds.). Indonesia Soil Research Institute (ISRI). https://balittanah.litbang.pertanian.go.id/ind/dokumentasi/juknis/juknis_kimia2.pdf

Gomiero, T. (2016). Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su8030281

Huang, W., Wu, J.-f., Pan, X.-h., Tan, X.-m., Zeng, Y.-j., Shi, Q.-h., Liu, T.-j., & Zeng, Y.-h. (2021). Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. Journal of Integrative Agriculture, 20(1), 236-247. https://doi.org/10.1016/S2095-3119(20)63347-0

Juhos, K., Czigány, S., Madarász, B., & Ladányi, M. (2019). Interpretation of soil quality indicators for land suitability assessment – A multivariate approach for Central European arable soils. Ecological Indicators, 99, 261-272. https://doi.org/10.1016/j.ecolind.2018.11.063

Kementan. (2016). Petunjuk Teknis Budidaya Padi Teknologi Hazton Tahun 2016. Ministry of Agriculture Republic of Indonesia https://tanamanpangan.pertanian.go.id/assets/front/uploads/document/PETUNJUK%20TEKNIS%20PADI%20TEKNOLOGI%20HAZTON-2016.pdf

Lakitan, B., Hadi, B., Herlinda, S., Siaga, E., Widuri, L. I., Kartika, K., Lindiana, L., Yunindyawati, Y., & Meihana, M. (2018). Recognizing farmers’ practices and constraints for intensifying rice production at Riparian Wetlands in Indonesia. NJAS: Wageningen Journal of Life Sciences, 85(1), 10-20. https://doi.org/10.1016/j.njas.2018.05.004

Li, P., Shi, K., Wang, Y., Kong, D., Liu, T., Jiao, J., Liu, M., Li, H., & Hu, F. (2019). Soil quality assessment of wheat-maize cropping system with different productivities in China: Establishing a minimum data set. Soil and Tillage Research, 190, 31-40. https://doi.org/10.1016/j.still.2019.02.019

Liliane, T. N., & Charles, M. S. (2020). Factors Affecting Yield of Crops. In Amanullah (Ed.), Agronomy - Climate Change & Food Security. IntechOpen. https://doi.org/10.5772/intechopen.90672

Livsey, J., Kätterer, T., Vico, G., Lyon, S. W., Lindborg, R., Scaini, A., Da, C. T., & Manzoni, S. (2019). Do alternative irrigation strategies for rice cultivation decrease water footprints at the cost of long-term soil health? Environmental Research Letters, 14(7), 074011. https://doi.org/10.1088/1748-9326/ab2108

M. Tahat, M., M. Alananbeh, K., A. Othman, Y., & I. Leskovar, D. (2020). Soil Health and Sustainable Agriculture. Sustainability, 12(12), 4859. https://doi.org/10.3390/su12124859

Martunis, L., Sufardi, S., & Muyassir, M. (2016). Analisis indeks kualitas tanah di lahan kering Kabupaten Aceh Besar Provinsi Aceh. Jurnal Budidaya Pertanian, 12(1), 34-40. https://ojs3.unpatti.ac.id/index.php/bdp/article/view/45

Mei, N., Yang, B., Tian, P., Jiang, Y., Sui, P., Sun, D., Zhang, Z., & Qi, H. (2019). Using a modified soil quality index to evaluate densely tilled soils with different yields in Northeast China. Environmental Science and Pollution Research, 26(14), 13867-13877. https://doi.org/10.1007/s11356-018-3946-2

Merang, O. P., Lahjie, A. M., Yusuf, S., & Ruslim, Y. (2020). Productivity of three varieties of local upland rice on swidden agriculture field in Setulang village, North Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 21(1). https://doi.org/10.13057/biodiv/d210108

Moebius-Clune, B. N., Moebius-Clune, D. J., Gugino, B. K., Idowu, O. J., Schindelbeck, R. R., Ristow, A. J., van Es, H. M., Thies, J. E., H.A. Shayler, McBride, M. B., Kurtz, K. S. M., Wolfe, D. W., & Abawi, G. S. (2016). Comprehensive Assessment of Soil Health – The Cornell Framework Manual, Edition 3.1. Cornell University, Geneva, NY. http://www.css.cornell.edu/extension/soil-health/manual.pdf

Mugizi, F. M. P., & Matsumoto, T. (2020). Population pressure and soil quality in Sub-Saharan Africa: Panel evidence from Kenya. Land Use Policy, 94, 104499. https://doi.org/10.1016/j.landusepol.2020.104499

Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., & Davari, M. (2018). Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318, 16-28. https://doi.org/10.1016/j.geoderma.2017.12.024

Naresh, R. K., Panwar, A. S., Dhaliwal, S. S., Gupta, R. K., Kumar, A., Rathore, R. S., Kumar, A., Kumar, D., Lal, M., Kumar, S., Tyagi, S., Kumar, V., Singh, S. P., Singh, V., & Mahajan, N. C. (2017). Effect of Organic Inputs on Strength and Stability of Soil Aggregates Associated Organic Carbon Concentration under Rice-Wheat Rotation in Indo-Gangetic Plain Zone of India. International Journal of Current Microbiology and Applied Sciences, 6(10), 1973-2008. https://doi.org/10.20546/ijcmas.2017.610.237

Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 5794869. https://doi.org/10.1155/2019/5794869

Qi, J.-Y., Han, S.-W., Lin, B.-J., Xiao, X.-P., Jensen, J. L., Munkholm, L. J., & Zhang, H.-L. (2022). Improved soil structural stability under no-tillage is related to increased soil carbon in rice paddies: Evidence from literature review and field experiment. Environmental Technology & Innovation, 26, 102248. https://doi.org/10.1016/j.eti.2021.102248

Robbani, H., Dewi, W. S., Prasojo, H., & Darsowiyono, S. (2018). Impacts of various fertilizer combinations onto some agronomical traits of rice (Oryza sativa L.) grown employing hazton methods. Journal of Cereals and Oilseeds, 9(4), 29-36. https://doi.org/10.5897/JCO2018.0185

Rui, Y., Murphy, D. V., Wang, X., & Hoyle, F. C. (2016). Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration. Scientific Reports, 6(1), 35496. https://doi.org/10.1038/srep35496

Shen, H., He, X., Liu, Y., Chen, Y., Tang, J., & Guo, T. (2016). A Complex Inoculant of N2-Fixing, P- and K-Solubilizing Bacteria from a Purple Soil Improves the Growth of Kiwifruit (Actinidia chinensis) Plantlets. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00841

Smith, G. R., & Archer, R. (2020). Climate, population, food security: adapting and evolving in times of global change. International Journal of Sustainable Development & World Ecology, 27(5), 419-423. https://doi.org/10.1080/13504509.2020.1712558

Sofo, A., Zanella, A., & Ponge, J.-F. (2022). Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use and Management, 38(2), 1085-1112. https://doi.org/10.1111/sum.12702

Supriyadi, Hartati, S., Machfiroh, N., & Ustiatik, R. (2016). Soil Quality Index in The Upstream of Bengawan Solo River Basin According to The Soil Function in Nutrient Cycling Based on Soybean Production in Agroforestry. AGRIVITA, Journal of Agricultural Science, 38(1), 9. https://doi.org/10.17503/agrivita.v38i1.496

Supriyadi, Purwanto, Sarijan, A., Mekiuw, Y., Ustiatik, R., & Prahesti, R. R. (2017). The assessment of soil quality at paddy fields in Merauke, Indonesia. Bulgarian Journal of Agricultural Science, 23(3), 443-448. https://www.agrojournal.org/23/03-13.pdf

Tang, L., Hayashi, K., Ohigashi, K., Shimura, M., & Kohyama, K. (2019). Developing characterization factors to quantify management impacts on soil quality of paddy fields within life cycle assessment. Journal of Cleaner Production, 238, 117890. https://doi.org/10.1016/j.jclepro.2019.117890

Truong, A. H., Ha-Duong, M., & Tran, H. A. (2022). Economics of co-firing rice straw in coal power plants in Vietnam. Renewable and Sustainable Energy Reviews, 154, 111742. https://doi.org/10.1016/j.rser.2021.111742

Ustiatik, R., Nuraini, Y., Suharjono, S., Jeyakumar, P., Anderson, C. W. N., & Handayanto, E. (2022). Mercury resistance and plant growth promoting traits of endophytic bacteria isolated from mercury-contaminated soil. Bioremediation Journal, 26(3), 208-227. https://doi.org/10.1080/10889868.2021.1973950

Wang, D., Bai, J., Wang, W., Zhang, G., Cui, B., Liu, X., & Li, X. (2018). Comprehensive assessment of soil quality for different wetlands in a Chinese delta. Land Degradation & Development, 29(10), 3783-3794. https://doi.org/10.1002/ldr.3086

Wang, E., Lin, X., Tian, L., Wang, X., Ji, L., Jin, F., & Tian, C. (2021). Effects of Short-Term Rice Straw Return on the Soil Microbial Community. Agriculture, 11(6), 561. https://doi.org/10.3390/agriculture11060561

Wang, H., Xu, J., Liu, X., Zhang, D., Li, L., Li, W., & Sheng, L. (2019). Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil and Tillage Research, 195, 104382. https://doi.org/10.1016/j.still.2019.104382

Wei, X., Zhu, Z., Liu, Y., Luo, Y., Deng, Y., Xu, X., Liu, S., Richter, A., Shibistova, O., Guggenberger, G., Wu, J., & Ge, T. (2020). C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biology and Fertility of Soils, 56(8), 1093-1107. https://doi.org/10.1007/s00374-020-01468-7

Xia, S., Song, Z., Li, Q., Guo, L., Yu, C., Singh, B. P., Fu, X., Chen, C., Wang, Y., & Wang, H. (2021). Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N, and lignin biomarker. Global Change Biology, 27(2), 417-434. https://doi.org/10.1111/gcb.15403

Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land, 9(28), 1-37. https://doi.org/10.3390/land9010028

Yates, C. A., Johnes, P. J., Owen, A. T., Brailsford, F. L., Glanville, H. C., Evans, C. D., Marshall, M. R., Jones, D. L., Lloyd, C. E. M., Jickells, T., & Evershed, R. P. (2019). Variation in dissolved organic matter (DOM) stoichiometry in U.K. freshwaters: Assessing the influence of land cover and soil C:N ratio on DOM composition. Limnology and Oceanography, 64(6), 2328-2340. https://doi.org/10.1002/lno.11186

Zhang, F., Che, Y., & Xiao, Y. (2019). Effects of rice straw incorporation and N fertilizer on ryegrass yield, soil quality, and greenhouse gas emissions from paddy soil. Journal of Soils and Sediments, 19(3), 1053-1063. https://doi.org/10.1007/s11368-018-2105-1

Refbacks

  • There are currently no refbacks.