Estimates of methane and nitrous oxide emission from a rice field in Central Java, Indonesia, based on the DeNitrification DeComposition model
Abstract
Indonesia is the world’s third largest rice producer, with most rice being cultivated (estimated 3.1 million ha) in Central Java. However, one of the environmental challenges in producing rice is greenhouse gas (GHG) emissions from rice fields. Therefore, understanding the GHG emissions (methane and nitrous oxide) from the rice farming system is important for better management practices. The objective of this study is to estimate the GHG emissions supported by a satellite database, namely, the DeNitrification DeComposition (DNDC) model, at three regencies at Central Java, Indonesia, Cilacap, Karanganyar, and Pati, as well as the factors determining the emissions. The DNDC model was obtained from https://www.dndc.sr.unh.edu, which consists of three main submodels that worked together in simulating N2O and N2 emissions: (1) the soil-climate/thermal-hydraulic flux submodel, (2) the decomposition submodel, and (3) the denitrification submodel. The results showed that the N2O emissions from rice farming in Karanganyar, Cilacap, and Pati were 19.0, 18.8, and 12.8 kg N ha−1 yr−1, respectively, while they were 213.7, 270.6, and 360.6 kg C ha−1 yr−1 for CH4 emissions, respectively. Consecutive dry or high precipitation, which resulted in cumulative depleted or elevated soil moisture, respectively, along with warmer temperature likely promoted higher methane and nitrous oxide. Experimental fields for validating the model in accordance with various agricultural practices are suggested for further study. Overall, the DNDC model has successfully estimated the CH4 and N2O emissions in Central Java when incorporated with various secondary climatic and land management big data resources.
Keywords
Full Text:
PDFReferences
Abdalla, M., Song, X., Ju, X., Topp, C. F. E., & Smith, P. (2020). Calibration and validation of the DNDC model to estimate nitrous oxide emissions and crop productivity for a summer maize-winter wheat double cropping system in Hebei, China. Environmental Pollution, 262, 114199. https://doi.org/10.1016/j.envpol.2020.114199
Ariani, M., Haryono, E., & Hanudin, E. (2021). Greenhouse Gas Emission from Rice field in Indonesia: Challenge for future research and development [GHG emission; rice field; Indonesia; future research]. 2021, 53(1), 14. https://doi.org/10.22146/ijg.55681
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., & Thomas, S. M. (2011). Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences, 108(1), 214. https://doi.org/10.1073/pnas.1011464108
Birch, H. F. (1964). Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant and Soil, 20(1), 43-49. https://doi.org/10.1007/BF01378096
Birla, D. S., Malik, K., Sainger, M., Chaudhary, D., Jaiwal, R., & Jaiwal, P. K. (2017). Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Critical Reviews in Food Science and Nutrition, 57(11), 2455-2481. https://doi.org/10.1080/10408398.2015.1084992
BMKG. (2019). Peraturan Badan Meteorologi, Klimatologi, dan Geofika Republik Indonesia Nomor 9 Tahun 2019 tentang Penyediaan dan Penyebaran Peringatan Dini Iklim Ekstrim. Badan Meteorologi, Klimatologi, dan Geofika Republik Indonesia http://jdih.bmkg.go.id/vifiles/PENYEDIAAN%20DAN%20PENYEBARAN%20PERINGATAN%20DINI%20IKLIM%20EKSTRIM%20NO-9%202019.PDF
BPS. (2021). Harvested Area, Productivity, and Production of Paddy by Province 2019-2021. BPS - Statistics Indonesia,. https://www.bps.go.id/indicator/53/1498/1/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, R. B., Piao, S., & Thornton, P. (2013). Carbon and other biogeochemical cycles. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465-570). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf
Connor, M., de Guia, A. H., Pustika, A. B., Sudarmaji, Kobarsih, M., & Hellin, J. (2021). Rice Farming in Central Java, Indonesia—Adoption of Sustainable Farming Practices, Impacts and Implications. Agronomy, 11(5), 881. https://doi.org/10.3390/agronomy11050881
D'Imperio, L., Nielsen, C. S., Westergaard-Nielsen, A., Michelsen, A., & Elberling, B. (2017). Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH4 budget. Global Change Biology, 23(2), 966-976. https://doi.org/10.1111/gcb.13400
FAO. (2017). The future of food and agriculture: Trends and challenges. Food and Agriculture Organization of the United Nations. Rome. https://www.fao.org/3/i6583e/i6583e.pdf?__cf_chl_managed_tk__=oWmmr9KgEIAzfdtwstkKyNIy2R56B9RI.mA.Y7cxkJY-1641792729-0-gaNycGzNCJE
Gilhespy, S. L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li, C., Misselbrook, T., Rees, R. M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E. L., Topp, C. F. E., Vetter, S., & Yeluripati, J. B. (2014). First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling, 292, 51-62. https://doi.org/10.1016/j.ecolmodel.2014.09.004
Griffis, T. J., Chen, Z., Baker, J. M., Wood, J. D., Millet, D. B., Lee, X., Venterea, R. T., & Turner, P. A. (2017). Nitrous oxide emissions are enhanced in a warmer and wetter world. Proceedings of the National Academy of Sciences, 114(45), 12081. https://doi.org/10.1073/pnas.1704552114
GRiSP. (2013). Rice Almanac (4th ed.). GRiSP (Global Rice Science Partnership), International Rice Research Institute. Los Banos, Philippines.
Han, J., Jia, Z., Wu, W., Li, C., Han, Q., & Zhang, J. (2014). Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Research, 155, 202-212. https://doi.org/10.1016/j.fcr.2013.09.004
Husnain, Widowati, L. R., Las, I., Sarwani, M., Rochayati, S., Setyorini, D., Hartatik, W., Subiksa, I. G. M., Suastika, I. W., Angria, L., Kasno, I., INurjaya, Wibowo, H., Zakiah, K., Aksani, D., Hatta, M., Ratmini, N. P. S., Barus, Y., Annisa, W., & Susilawati. (2020). Rekomendasi pupuk N, P, K spesifik lokasi untuk tanaman padi, jagung, dan kedelai pada lahan sawah per kecamatan. Buku I: PADI (F. F. Agung, A. P. Saputra, & T. P. Wijaya, Eds.). Badan Penelitian Dan Pengembangan Pertanian Kementerian Pertanian. https://bbsdlp.litbang.pertanian.go.id/ind/images/PAJALAI/Buku-I-Padi_Final.pdf
Islam, S. F.-u., van Groenigen, J. W., Jensen, L. S., Sander, B. O., & de Neergaard, A. (2018). The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Science of The Total Environment, 612, 1329-1339. https://doi.org/10.1016/j.scitotenv.2017.09.022
Jiang, Y., Carrijo, D., Huang, S., Chen, J., Balaine, N., Zhang, W., van Groenigen, K. J., & Linquist, B. (2019). Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 234, 47-54. https://doi.org/10.1016/j.fcr.2019.02.010
Kim, G. W., Kim, P. J., Khan, M. I., & Lee, S.-J. (2021). Effect of Rice Planting on Nitrous Oxide (N2O) Emission under Different Levels of Nitrogen Fertilization. Agronomy, 11(2), 217. https://doi.org/10.3390/agronomy11020217
Li, C., Frolking, S., & Frolking, T. A. (1992a). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 97(D9), 9759-9776. https://doi.org/10.1029/92JD00509
Li, C., Frolking, S., & Frolking, T. A. (1992b). A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. Journal of Geophysical Research: Atmospheres, 97(D9), 9777-9783. https://doi.org/10.1029/92JD00510
Li, H., Wang, L., Li, J., Gao, M., Zhang, J., Zhang, J., Qiu, J., Deng, J., Li, C., & Frolking, S. (2017). The development of China-DNDC and review of its applications for sustaining Chinese agriculture. Ecological Modelling, 348, 1-13. https://doi.org/10.1016/j.ecolmodel.2017.01.003
Li, X., Gao, J., Guo, Z., Yin, Y., Zhang, X., Sun, P., & Gao, Z. (2020). A Study of Rainfall-Runoff Movement Process on High and Steep Slopes Affected by Double Turbulence Sources. Scientific Reports, 10(1), 9001. https://doi.org/10.1038/s41598-020-66060-3
Liu, R., Hayden, H. L., Suter, H., Hu, H., Lam, S. K., He, J., Mele, P. M., & Chen, D. (2017). The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biology and Fertility of Soils, 53(1), 141-152. https://doi.org/10.1007/s00374-016-1167-8
Liu, Y., Ni, B.-J., Sharma, K. R., & Yuan, Z. (2015). Methane emission from sewers. Science of The Total Environment, 524-525, 40-51. https://doi.org/10.1016/j.scitotenv.2015.04.029
Lu, Y., Fu, L., Lu, Y., Hugenholtz, F., & Ma, K. (2015). Effect of temperature on the structure and activity of a methanogenic archaeal community during rice straw decomposition. Soil Biology and Biochemistry, 81, 17-27. https://doi.org/10.1016/j.soilbio.2014.10.031
Minamikawa, K., Fumoto, T., Itoh, M., Hayano, M., Sudo, S., & Yagi, K. (2014). Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model. Biology and Fertility of Soils, 50(6), 879-889. https://doi.org/10.1007/s00374-014-0909-8
Ministry of Agriculture. (2018). Agricultural Statistics 2018 (A. A. Susanti & B. Waryanto, Eds.). Center for Agricultural Data and Information System, Ministry of Agriculture Republic of Indonesia. http://epublikasi.setjen.pertanian.go.id/download/file/438-statistik-pertanian-2018
Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7-14. https://doi.org/10.1111/nyas.12540
Nungkat, P., Kusuma, Z., & Handayanto, E. (2015). Effects of organic matter application on methane emission from paddy fields adopting organic farming system [methane; organic fertilizers; rice cultivars]. 2015, 2(2), 10. https://doi.org/10.15243/jdmlm.2014.022.303
Oo, A. Z., Sudo, S., Inubushi, K., Mano, M., Yamamoto, A., Ono, K., Osawa, T., Hayashida, S., Patra, P. K., Terao, Y., Elayakumar, P., Vanitha, K., Umamageswari, C., Jothimani, P., & Ravi, V. (2018). Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agriculture, Ecosystems & Environment, 252, 148-158. https://doi.org/10.1016/j.agee.2017.10.014
Seitzinger, S. P., & Phillips, L. (2017). Nitrogen stewardship in the Anthropocene. Science, 357(6349), 350-351. https://doi.org/10.1126/science.aao0812
Setyanto, P., Pramono, A., Adriany, T. A., Susilawati, H. L., Tokida, T., Padre, A. T., & Minamikawa, K. (2018). Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Science and Plant Nutrition, 64(1), 23-30. https://doi.org/10.1080/00380768.2017.1409600
Smith, K. A. (2017). Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. European Journal of Soil Science, 68(2), 137-155. https://doi.org/10.1111/ejss.12409
Susilawati, H. L., Setyanto, P., Makarim, A. K., Ariani, M., Ito, K., & Inubushi, K. (2015). Effects of steel slag applications on CH4, N2O and the yields of Indonesian rice fields: a case study during two consecutive rice-growing seasons at two sites. Soil Science and Plant Nutrition, 61(4), 704-718. https://doi.org/10.1080/00380768.2015.1041861
Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., Huntzinger, D. N., Gurney, K. R., Sitch, S., Zhang, B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G., Dlugokencky, E., Friedlingstein, P., Melillo, J., Pan, S., Poulter, B., Prinn, R., Saunois, M., Schwalm, C. R., & Wofsy, S. C. (2016). The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 531(7593), 225-228. https://doi.org/10.1038/nature16946
Timilsina, A., Bizimana, F., Pandey, B., Yadav, R. K. P., Dong, W., & Hu, C. (2020). Nitrous Oxide Emissions from Paddies: Understanding the Role of Rice Plants. Plants, 9(2), 180. https://doi.org/10.3390/plants9020180
Tubiello, F. N., Salvatore, M., Golec, R. D. C., A. Ferrara, S. R., Biancalani, R., Federici, S., Jacobs, H., & Flammini, A. (2014). Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. ESS Working Paper, 2, 1-75. https://www.fao.org/3/i3671e/i3671e.pdf
Wang, C., Jin, Y., Ji, C., Zhang, N., Song, M., Kong, D., Liu, S., Zhang, X., Liu, X., Zou, J., Li, S., & Pan, G. (2018). An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies. Agriculture, Ecosystems & Environment, 257, 165-174. https://doi.org/10.1016/j.agee.2018.02.003
Xu, Y., Ge, J., Tian, S., Li, S., Nguy-Robertson, A. L., Zhan, M., & Cao, C. (2015). Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Science of The Total Environment, 505, 1043-1052. https://doi.org/10.1016/j.scitotenv.2014.10.073
Zhang, X., Bi, J., Sun, H., Zhang, J., & Zhou, S. (2019). Greenhouse gas mitigation potential under different rice-crop rotation systems: from site experiment to model evaluation. Clean Technologies and Environmental Policy, 21(8), 1587-1601. https://doi.org/10.1007/s10098-019-01729-6
Zhang, Y., & Niu, H. (2016). The development of the DNDC plant growth sub-model and the application of DNDC in agriculture: A review. Agriculture, Ecosystems & Environment, 230, 271-282. https://doi.org/10.1016/j.agee.2016.06.017
Zhang, Y., Shou, W., Maucieri, C., & Lin, F. (2021). Rainfall increasing offsets the negative effects of nighttime warming on GHGs and wheat yield in North China Plain. Scientific Reports, 11(1), 6505. https://doi.org/10.1038/s41598-021-86034-3
Zhao, X., Pu, C., Ma, S.-T., Liu, S.-L., Xue, J.-F., Wang, X., Wang, Y.-Q., Li, S.-S., Lal, R., Chen, F., & Zhang, H.-L. (2019). Management-induced greenhouse gases emission mitigation in global rice production. Science of The Total Environment, 649, 1299-1306. https://doi.org/10.1016/j.scitotenv.2018.08.392
Zhao, Z., Cao, L., Deng, J., Sha, Z., Chu, C., Zhou, D., Wu, S., & Lv, W. (2020). Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems, 178, 102743. https://doi.org/10.1016/j.agsy.2019.102743
Zhou, F., Shang, Z., Ciais, P., Tao, S., Piao, S., Raymond, P., He, C., Li, B., Wang, R., Wang, X., Peng, S., Zeng, Z., Chen, H., Ying, N., Hou, X., & Xu, P. (2014). A New High-Resolution N2O Emission Inventory for China in 2008. Environmental Science & Technology, 48(15), 8538-8547. https://doi.org/10.1021/es5018027
Refbacks
- There are currently no refbacks.