Ecotoxicological assessment of Zn, Cu and Ni based NPs contamination in Arenosols

Sergey Kolesnikov, Аlena Timoshenko, Tatiana Minnikova, Tatiana Minkina, Vishnu D Rajput, Kamil Kazeev, Morteza Feizi, Elena Fedorenko, Saglara Mandzhieva, Svetlana Sushkova


Nanoparticles are increasingly used in many industrial fields because of their special properties. In this context, several questions arise related to possible negative consequences associated with nanoparticle (NPs) entrance into the ecosystem.  The adsorption of NPs by soil can adversely influence its biological properties. In the present article, the influence of Cu, Zn, and Ni NPs on the biological characteristics of Arenosol is considered. Research aimed to study the effect of Cu, Zn, Ni NPs on the biological characteristics of sandy loam chernozem. Copper, Zn, and Ni NPs were added to the soil in concentrations of 100, 1,000, and 10,000 mg kg-1. The effect of NPs on the biological properties of Arenosol was evaluated after 10-day incubation. The biological indices of the ecological condition of the soil, including the germination of radish, the length of the roots, the bacteria population, Azotobacter sp. count, the catalase activity, and dehydrogenases were studied. As a result of this study, it was revealed that the degree of indices changes depending on the concentration of Cu, Zn, and Ni NPs in the Arenosols. Microbiological characteristics (bacteria population, and Azotobacter sp. count) and phytotoxic feature (length of roots and radish germination) properties were most sensitive to contamination compared to the enzyme activity of Arenosol. Based on the soil integral index of a biological state, the strongest inhibitory effect on biological parameters of Arenosols relative to the control was exerted by Cu NPs (lower than control by 48-72%), while the greatest stability in Arenosol was found for Ni NPs (lower than control by 30-55%). The studied biological parameters allow characterizing the severity of nanoparticle exposure on Arenosols. Early diagnostics of the severity of soil contamination by NPs can be successfully used to quickly assess their impact on the soil condition and prevent possible adverse consequences.


Pollution; Arenosols; NPs; Biological properties

Full Text:



Abdel-Khalek, A. A., Kadry, M. A. M., Badran, S. R., & Marie, M.-A. S. (2015). Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress. The Journal of Basic & Applied Zoology, 72, 43-57.

Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1), 5037.

Adisa, I. O., Rawat, S., Pullagurala, V. L. R., Dimkpa, C. O., Elmer, W. H., White, J. C., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2020). Nutritional Status of Tomato (Solanum lycopersicum) Fruit Grown in Fusarium-Infested Soil: Impact of Cerium Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 68(7), 1986-1997.

Ali, S. S., Al-Tohamy, R., Koutra, E., Moawad, M. S., Kornaros, M., Mustafa, A. M., Mahmoud, Y. A. G., Badr, A., Osman, M. E. H., Elsamahy, T., Jiao, H., & Sun, J. (2021). Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of The Total Environment, 792, 148359.

Ameta, S. K., Rai, A. K., Hiran, D., Ameta, R., & Ameta, S. C. (2020). Use of Nanomaterials in Food Science. In M. Ghorbanpour, P. Bhargava, A. Varma, & D. K. Choudhary (Eds.), Biogenic Nano-Particles and their Use in Agro-ecosystems (pp. 457-488). Springer, Singapore.

Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell'Amico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57(5), 401-412.

Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., & Tufenkji, N. (2017). Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating [10.1039/C6EN00567E]. Environmental Science: Nano, 4(4), 907-918.

Baklitskaya, O. (2011, April 19, 2011). Silver nanoparticles, nanoparticles can be dangerous. Science and Life

Faizan, M., Faraz, A., Mir, A. R., & Hayat, S. (2020). Role of Zinc Oxide Nanoparticles in Countering Negative Effects Generated by Cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 40(1), 101-115.

Faizan, M., Sehar, S., Rajput, V. D., Faraz, A., Afzal, S., Minkina, T., Sushkova, S., Adil, M. F., Yu, F., Alatar, A. A., Akhter, F., & Faisal, M. (2021). Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice (Oryza sativa) Plant under Arsenic Stress. Plants, 10(11), 2254.

Feng, Y., Cui, X., He, S., Dong, G., Chen, M., Wang, J., & Lin, X. (2013). The Role of Metal Nanoparticles in Influencing Arbuscular Mycorrhizal Fungi Effects on Plant Growth. Environmental Science & Technology, 47(16), 9496-9504.

Ghosh, M., Jana, A., Sinha, S., Jothiramajayam, M., Nag, A., Chakraborty, A., Mukherjee, A., & Mukherjee, A. (2016). Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 807, 25-32.

Hossain, Z., Mustafa, G., & Komatsu, S. (2015). Plant Responses to Nanoparticle Stress. International Journal of Molecular Sciences, 16(11), 26644-26653.

Iqbal, M., Umar, S., & Mahmooduzzafar. (2019). Nano-fertilization to Enhance Nutrient Use Efficiency and Productivity of Crop Plants. In A. Husen & M. Iqbal (Eds.), Nanomaterials and Plant Potential (pp. 473-505). Springer, Cham.

Iqbal, S., Jabeen, F., Chaudhry, A. S., Shah, M. A., & Batiha, G. E. (2021). Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health, 37(10), 635-651.

Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th, Ed.). CRC Press.

Khanna, K., Kohli, S. K., Handa, N., Kaur, H., Ohri, P., Bhardwaj, R., Yousaf, B., Rinklebe, J., & Ahmad, P. (2021). Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety, 222, 112459.

Kolesnikov, S., Minnikova, T., Minkina, T., Rajput, V. D., Tsepina, N., Kazeev, K., Zhadobin, A., Nevedomaya, E., Ter-Misakyants, T., Akimenko, Y., Mandzhieva, S., Sushkova, S., Ranjan, A., Asylbaev, I., Popova, V., & Tymoshenko, A. (2021). Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments, 8(11), 119.

Kolesnikov, S., Timoshenko, A., Minnikova, T., Tsepina, N., Kazeev, K., Akimenko, Y., Zhadobin, A., Shuvaeva, V., Rajput, V. D., Mandzhieva, S., Sushkova, S., Minkina, T., Dudnikova, T., Mazarji, M., Alamri, S., Siddiqui, M. H., & Singh, R. K. (2021). Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth. Plants, 10(10), 2080.

Kolesnikov, S. I., Kazeev, K. S., & Akimenko, Y. V. (2019). Development of regional standards for pollutants in the soil using biological parameters. Environmental Monitoring and Assessment, 191(9), 544.

Manceau, A., Nagy, K. L., Marcus, M. A., Lanson, M., Geoffroy, N., Jacquet, T., & Kirpichtchikova, T. (2008). Formation of Metallic Copper Nanoparticles at the Soil−Root Interface. Environmental Science & Technology, 42(5), 1766-1772.

Metryka, O., Wasilkowski, D., & Mrozik, A. (2021). Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. International Journal of Molecular Sciences, 22(21), 11811.

Minkina, T., Rajput, V., Fedorenko, G., Fedorenko, A., Mandzhieva, S., Sushkova, S., Morin, T., & Yao, J. (2020). Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health, 42(1), 45-58.

Moll, J., Gogos, A., Bucheli, T. D., Widmer, F., & van der Heijden, M. G. A. (2016). Effect of nanoparticles on red clover and its symbiotic microorganisms. Journal of Nanobiotechnology, 14(1), 36.

Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L., & Ros, M. (2000). Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry, 32(13), 1877-1883.

Pastrana, H., Avila, A., & Tsai, C. S. J. (2018). Nanomaterials in Cosmetic Products: the Challenges with regard to Current Legal Frameworks and Consumer Exposure. NanoEthics, 12(2), 123-137.

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. d. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.

Peyrot, C., Wilkinson, K. J., Desrosiers, M., & Sauvé, S. (2014). Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem, 33(1), 115-125.

Polischuk, S., Fadkin, G., Churilov, D., Churilova, V., & Churilov, G. (2019). The stimulating effect of nanoparticle suspensions on seeds and seedlings of Scotch pine (Pínus sylvéstris). IOP Conference Series: Earth and Environmental Science, 226, 012020.

Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol, 94(2), 287-293.

Rajput, V. D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., Sushkova, S., Lysenko, V., Soldatov, M. A., & Burachevskaya, M. (2021). Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Nanomaterials, 11(7), 1722.

Rajput, V. D., Minkina, T., Kumari, A., Harish, Singh, V. K., Verma, K. K., Mandzhieva, S., Sushkova, S., Srivastava, S., & Keswani, C. (2021). Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants, 10(6), 1221.

Rajput, V. D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., Nevidomskyaya, D., & Gromakova, N. (2017). Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments, 18(6), 2179-2187.

Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., Ghazaryan, K. A., & Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management, 9, 76-84.

Rajput, V. D., Singh, A., Singh, V. K., Minkina, T. M., & Sushkova, S. (2021). Chapter 4 - Impact of nanoparticles on soil resource. In A. Amrane, D. Mohan, T. A. Nguyen, A. A. Assadi, & G. Yasin (Eds.), Nanomaterials for Soil Remediation (pp. 65-85). Elsevier.

Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021). Nanoparticles induced stress and toxicity in plants. Environmental Nanotechnology, Monitoring & Management, 15, 100457.

Samarajeewa, A. D., Velicogna, J. R., Princz, J. I., Subasinghe, R. M., Scroggins, R. P., & Beaudette, L. A. (2017). Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environmental Pollution, 220, 504-513.

Shekhawat, G. S., Mahawar, L., Rajput, P., Rajput, V. D., Minkina, T., & Singh, R. K. (2021). Role of Engineered Carbon Nanoparticles (CNPs) in Promoting Growth and Metabolism of Vigna radiata (L.) Wilczek: Insights into the Biochemical and Physiological Responses. Plants, 10(7), 1317.

Shende, S. S., Rajput, V. D., Gorovtsov, A. V., Harish, Saxena, P., Minkina, T. M., Chokheli, V. A., Jatav, H. S., Sushkova, S. N., Kaur, P., & Kizilkaya, R. (2021). Interaction of Nanoparticles with Microbes. In P. Singh, R. Singh, P. Verma, R. Bhadouria, A. Kumar, & M. Kaushik (Eds.), Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS) (pp. 175-188). Springer, Cham.

Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1), 65.

Tourinho, P. S., van Gestel, C. A. M., Lofts, S., Svendsen, C., Soares, A. M. V. M., & Loureiro, S. (2012). Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem, 31(8), 1679-1692.

Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H. u., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, 137778.

Vodyanitskii, Y. N. (2016). Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science, 14(3), 257-263.

Yadav, T., Mungray, A. A., & Mungray, A. K. (2014). Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology volume. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews) (Vol. 230). Springer, Cham.

Yoo, A., Lin, M., & Mustapha, A. (2021). Zinc Oxide and Silver Nanoparticle Effects on Intestinal Bacteria. Materials, 14(10), 2489.

Zoufan, P., Baroonian, M., & Zargar, B. (2020). ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environmental Science and Pollution Research, 27(10), 11066-11078.

Zvyagintsev, D. G., Zenova, G. M., Sudnizin, I. I., & Doroshenko, E. A. (2005). The Ability of Soil Actinomycetes to Develop at an Extremely Low Humidity. Doklady Biological Sciences, 405(1), 461-463.


  • There are currently no refbacks.