Ecotoxicological assessment of Zn, Cu and Ni based NPs contamination in Arenosols
Abstract
Keywords
Full Text:
PDFReferences
Abdel-Khalek, A. A., Kadry, M. A. M., Badran, S. R., & Marie, M.-A. S. (2015). Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress. The Journal of Basic & Applied Zoology, 72, 43-57. https://doi.org/10.1016/j.jobaz.2015.04.001
Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1), 5037. https://doi.org/10.1038/s41598-020-61696-7
Adisa, I. O., Rawat, S., Pullagurala, V. L. R., Dimkpa, C. O., Elmer, W. H., White, J. C., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2020). Nutritional Status of Tomato (Solanum lycopersicum) Fruit Grown in Fusarium-Infested Soil: Impact of Cerium Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 68(7), 1986-1997. https://doi.org/10.1021/acs.jafc.9b06840
Ali, S. S., Al-Tohamy, R., Koutra, E., Moawad, M. S., Kornaros, M., Mustafa, A. M., Mahmoud, Y. A. G., Badr, A., Osman, M. E. H., Elsamahy, T., Jiao, H., & Sun, J. (2021). Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of The Total Environment, 792, 148359. https://doi.org/10.1016/j.scitotenv.2021.148359
Ameta, S. K., Rai, A. K., Hiran, D., Ameta, R., & Ameta, S. C. (2020). Use of Nanomaterials in Food Science. In M. Ghorbanpour, P. Bhargava, A. Varma, & D. K. Choudhary (Eds.), Biogenic Nano-Particles and their Use in Agro-ecosystems (pp. 457-488). Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_24
Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell'Amico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57(5), 401-412. https://doi.org/10.1016/j.chemosphere.2004.06.013
Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., & Tufenkji, N. (2017). Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating [10.1039/C6EN00567E]. Environmental Science: Nano, 4(4), 907-918. https://doi.org/10.1039/C6EN00567E
Baklitskaya, O. (2011, April 19, 2011). Silver nanoparticles, nanoparticles can be dangerous. Science and Life https://www.nkj.ru/news/19470/
Faizan, M., Faraz, A., Mir, A. R., & Hayat, S. (2020). Role of Zinc Oxide Nanoparticles in Countering Negative Effects Generated by Cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 40(1), 101-115. https://doi.org/10.1007/s00344-019-10059-2
Faizan, M., Sehar, S., Rajput, V. D., Faraz, A., Afzal, S., Minkina, T., Sushkova, S., Adil, M. F., Yu, F., Alatar, A. A., Akhter, F., & Faisal, M. (2021). Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice (Oryza sativa) Plant under Arsenic Stress. Plants, 10(11), 2254. https://doi.org/10.3390/plants10112254
Feng, Y., Cui, X., He, S., Dong, G., Chen, M., Wang, J., & Lin, X. (2013). The Role of Metal Nanoparticles in Influencing Arbuscular Mycorrhizal Fungi Effects on Plant Growth. Environmental Science & Technology, 47(16), 9496-9504. https://doi.org/10.1021/es402109n
Ghosh, M., Jana, A., Sinha, S., Jothiramajayam, M., Nag, A., Chakraborty, A., Mukherjee, A., & Mukherjee, A. (2016). Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 807, 25-32. https://doi.org/10.1016/j.mrgentox.2016.07.006
Hossain, Z., Mustafa, G., & Komatsu, S. (2015). Plant Responses to Nanoparticle Stress. International Journal of Molecular Sciences, 16(11), 26644-26653. https://doi.org/10.3390/ijms161125980
Iqbal, M., Umar, S., & Mahmooduzzafar. (2019). Nano-fertilization to Enhance Nutrient Use Efficiency and Productivity of Crop Plants. In A. Husen & M. Iqbal (Eds.), Nanomaterials and Plant Potential (pp. 473-505). Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1
Iqbal, S., Jabeen, F., Chaudhry, A. S., Shah, M. A., & Batiha, G. E. (2021). Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health, 37(10), 635-651. https://doi.org/10.1177/07482337211011008
Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th, Ed.). CRC Press. https://doi.org/10.1201/b10158
Khanna, K., Kohli, S. K., Handa, N., Kaur, H., Ohri, P., Bhardwaj, R., Yousaf, B., Rinklebe, J., & Ahmad, P. (2021). Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety, 222, 112459. https://doi.org/10.1016/j.ecoenv.2021.112459
Kolesnikov, S., Minnikova, T., Minkina, T., Rajput, V. D., Tsepina, N., Kazeev, K., Zhadobin, A., Nevedomaya, E., Ter-Misakyants, T., Akimenko, Y., Mandzhieva, S., Sushkova, S., Ranjan, A., Asylbaev, I., Popova, V., & Tymoshenko, A. (2021). Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments, 8(11), 119. https://doi.org/10.3390/environments8110119
Kolesnikov, S., Timoshenko, A., Minnikova, T., Tsepina, N., Kazeev, K., Akimenko, Y., Zhadobin, A., Shuvaeva, V., Rajput, V. D., Mandzhieva, S., Sushkova, S., Minkina, T., Dudnikova, T., Mazarji, M., Alamri, S., Siddiqui, M. H., & Singh, R. K. (2021). Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth. Plants, 10(10), 2080. https://doi.org/10.3390/plants10102080
Kolesnikov, S. I., Kazeev, K. S., & Akimenko, Y. V. (2019). Development of regional standards for pollutants in the soil using biological parameters. Environmental Monitoring and Assessment, 191(9), 544. https://doi.org/10.1007/s10661-019-7718-3
Manceau, A., Nagy, K. L., Marcus, M. A., Lanson, M., Geoffroy, N., Jacquet, T., & Kirpichtchikova, T. (2008). Formation of Metallic Copper Nanoparticles at the Soil−Root Interface. Environmental Science & Technology, 42(5), 1766-1772. https://doi.org/10.1021/es072017o
Metryka, O., Wasilkowski, D., & Mrozik, A. (2021). Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. International Journal of Molecular Sciences, 22(21), 11811. https://doi.org/10.3390/ijms222111811
Minkina, T., Rajput, V., Fedorenko, G., Fedorenko, A., Mandzhieva, S., Sushkova, S., Morin, T., & Yao, J. (2020). Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health, 42(1), 45-58. https://doi.org/10.1007/s10653-019-00269-8
Moll, J., Gogos, A., Bucheli, T. D., Widmer, F., & van der Heijden, M. G. A. (2016). Effect of nanoparticles on red clover and its symbiotic microorganisms. Journal of Nanobiotechnology, 14(1), 36. https://doi.org/10.1186/s12951-016-0188-7
Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L., & Ros, M. (2000). Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry, 32(13), 1877-1883. https://doi.org/10.1016/S0038-0717(00)00161-9
Pastrana, H., Avila, A., & Tsai, C. S. J. (2018). Nanomaterials in Cosmetic Products: the Challenges with regard to Current Legal Frameworks and Consumer Exposure. NanoEthics, 12(2), 123-137. https://doi.org/10.1007/s11569-018-0317-x
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. d. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
Peyrot, C., Wilkinson, K. J., Desrosiers, M., & Sauvé, S. (2014). Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem, 33(1), 115-125. https://doi.org/10.1002/etc.2398
Polischuk, S., Fadkin, G., Churilov, D., Churilova, V., & Churilov, G. (2019). The stimulating effect of nanoparticle suspensions on seeds and seedlings of Scotch pine (Pínus sylvéstris). IOP Conference Series: Earth and Environmental Science, 226, 012020. https://doi.org/10.1088/1755-1315/226/1/012020
Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol, 94(2), 287-293. https://doi.org/10.1007/s00253-012-3969-4
Rajput, V. D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., Sushkova, S., Lysenko, V., Soldatov, M. A., & Burachevskaya, M. (2021). Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Nanomaterials, 11(7), 1722. https://doi.org/10.3390/nano11071722
Rajput, V. D., Minkina, T., Kumari, A., Harish, Singh, V. K., Verma, K. K., Mandzhieva, S., Sushkova, S., Srivastava, S., & Keswani, C. (2021). Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants, 10(6), 1221. https://doi.org/10.3390/plants10061221
Rajput, V. D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., Nevidomskyaya, D., & Gromakova, N. (2017). Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments, 18(6), 2179-2187. https://doi.org/10.1007/s11368-017-1793-2
Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., Ghazaryan, K. A., & Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management, 9, 76-84. https://doi.org/10.1016/j.enmm.2017.12.006
Rajput, V. D., Singh, A., Singh, V. K., Minkina, T. M., & Sushkova, S. (2021). Chapter 4 - Impact of nanoparticles on soil resource. In A. Amrane, D. Mohan, T. A. Nguyen, A. A. Assadi, & G. Yasin (Eds.), Nanomaterials for Soil Remediation (pp. 65-85). Elsevier. https://doi.org/10.1016/B978-0-12-822891-3.00004-9
Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021). Nanoparticles induced stress and toxicity in plants. Environmental Nanotechnology, Monitoring & Management, 15, 100457. https://doi.org/10.1016/j.enmm.2021.100457
Samarajeewa, A. D., Velicogna, J. R., Princz, J. I., Subasinghe, R. M., Scroggins, R. P., & Beaudette, L. A. (2017). Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environmental Pollution, 220, 504-513. https://doi.org/10.1016/j.envpol.2016.09.094
Shekhawat, G. S., Mahawar, L., Rajput, P., Rajput, V. D., Minkina, T., & Singh, R. K. (2021). Role of Engineered Carbon Nanoparticles (CNPs) in Promoting Growth and Metabolism of Vigna radiata (L.) Wilczek: Insights into the Biochemical and Physiological Responses. Plants, 10(7), 1317. https://doi.org/10.3390/plants10071317
Shende, S. S., Rajput, V. D., Gorovtsov, A. V., Harish, Saxena, P., Minkina, T. M., Chokheli, V. A., Jatav, H. S., Sushkova, S. N., Kaur, P., & Kizilkaya, R. (2021). Interaction of Nanoparticles with Microbes. In P. Singh, R. Singh, P. Verma, R. Bhadouria, A. Kumar, & M. Kaushik (Eds.), Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS) (pp. 175-188). Springer, Cham. https://doi.org/10.1007/978-3-030-66956-0_12
Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1), 65. https://doi.org/10.1186/s12951-017-0308-z
Tourinho, P. S., van Gestel, C. A. M., Lofts, S., Svendsen, C., Soares, A. M. V. M., & Loureiro, S. (2012). Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem, 31(8), 1679-1692. https://doi.org/10.1002/etc.1880
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H. u., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
Vodyanitskii, Y. N. (2016). Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science, 14(3), 257-263. https://doi.org/10.1016/j.aasci.2016.08.011
Yadav, T., Mungray, A. A., & Mungray, A. K. (2014). Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology volume. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews) (Vol. 230). Springer, Cham. https://doi.org/10.1007/978-3-319-04411-8_4
Yoo, A., Lin, M., & Mustapha, A. (2021). Zinc Oxide and Silver Nanoparticle Effects on Intestinal Bacteria. Materials, 14(10), 2489. https://doi.org/10.3390/ma14102489
Zoufan, P., Baroonian, M., & Zargar, B. (2020). ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environmental Science and Pollution Research, 27(10), 11066-11078. https://doi.org/10.1007/s11356-020-07735-2
Zvyagintsev, D. G., Zenova, G. M., Sudnizin, I. I., & Doroshenko, E. A. (2005). The Ability of Soil Actinomycetes to Develop at an Extremely Low Humidity. Doklady Biological Sciences, 405(1), 461-463. https://doi.org/10.1007/s10630-005-0165-z
Refbacks
- There are currently no refbacks.