Rice-husk biochar effects on organic carbon, aggregate stability and nitrogen-fertility of coarse-textured Ultisols evaluated using Celosia argentea growth
Abstract
Keywords
Full Text:
PDFReferences
Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G., & Pourbabaee, A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil and Environment, 61(11), 475-482. https://doi.org/10.17221/117/2015-PSE
Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Simeon, V. T. (2019). Biochar and poultry manure effects on soil properties and radish (Raphanus sativus L.) yield. Biological Agriculture & Horticulture, 35(1), 33-45. https://doi.org/10.1080/01448765.2018.1500306
Adubasim, C. V., Igwenagu, C. M., Josiah, G. O., Obalum, S. E., Okonkwo, U. M., Uzoh, I. M., & Sato, S. (2018). Substitution of manure source and aerator in nursery media on sandy loam topsoil and their fertility indices 4 months after formulation. International Journal of Recycling of Organic Waste in Agriculture, 7(4), 305-312. https://doi.org/10.1007/s40093-018-0216-8
Adubasim, C. V., Law-Ogbomo, K. E., & Obalum, S. E. (2017). Sweet potato (Ipomoea batatas) growth and tuber yield as influenced by plant spacing on sandy loam in humid tropical environment. Agro-Science, 16(3), 46-50. https://doi.org/10.4314/as.v16i3.7
Baiyeri, P. K. (2020). Agricultural waste management for horticulture revolution in sub-Saharan Africa. Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 15, 1-28. https://doi.org/10.1079/PAVSNNR202015017
Bremner, J. M., & Mulvaney, C. S. (1983). Nitrogen—Total. In Methods of Soil Analysis (pp. 595-624). https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Chatterjee, R., Sajjadi, B., Chen, W.-Y., Mattern, D. L., Hammer, N., Raman, V., & Dorris, A. (2020). Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption [Original Research]. Frontiers in Energy Research, 8(85). https://doi.org/10.3389/fenrg.2020.00085
Cheng, W., Padre, A. T., Sato, C., Shiono, H., Hattori, S., Kajihara, A., Aoyama, M., Tawaraya, K., & Kumagai, K. (2016). Changes in the soil C and N contents, C decomposition and N mineralization potentials in a rice paddy after long-term application of inorganic fertilizers and organic matter. Soil Science and Plant Nutrition, 62(2), 212-219. https://doi.org/10.1080/00380768.2016.1155169
Chibuike-Ezepue, G., Uzoh, I., & Unagwu, B. (2019). Biochar-induced modification of soil properties and the effect on crop production. Advances in Agricultural Science, 7(2), 59-87.
Chude, V. O., Olayiwola, S. O., Osho, A. O., & Daudu, C. K. (2011). Fertilizer Use and Management Practices for Crops in Nigeria (4 ed.). Fertilizer Procurement and Distribution Division (FPDD), Federal Ministry of Agriculture and Rural Development, Abuja. https://businessdocbox.com/Agriculture/69535682-Edited-by-v-o-chude-s-o-olayiwola-a-o-osho-c-k-daudu.html
Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 3(2), 275-293. https://doi.org/10.3390/agronomy3020275
Crane-Droesch, A., Abiven, S., Jeffery, S., & Torn, M. S. (2013). Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environmental Research Letters, 8(4), 044049. https://doi.org/10.1088/1748-9326/8/4/044049
Edeh, I. G., Mašek, O., & Buss, W. (2020). A meta-analysis on biochar's effects on soil water properties – New insights and future research challenges. Science of The Total Environment, 714, 136857. https://doi.org/10.1016/j.scitotenv.2020.136857
Ezenne, G. I., Obalum, S. E., & Tanner, J. (2019). Physical-hydraulic properties of tropical sandy-loam soil in response to rice-husk dust and cattle dung amendments and surface mulching. Hydrological Sciences Journal, 64(14), 1746-1754. https://doi.org/10.1080/02626667.2019.1662909
Ghorbani, M., Asadi, H., & Abrishamkesh, S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research, 7(3), 258-265. https://doi.org/10.1016/j.iswcr.2019.05.005
Han, L., Zhang, B., Chen, L., Feng, Y., Yang, Y., & Sun, K. (2021). Impact of biochar amendment on soil aggregation varied with incubation duration and biochar pyrolysis temperature. Biochar, 3(3), 339-347. https://doi.org/10.1007/s42773-021-00097-z
Igalavithana, A. D., Ok, Y. S., Usman, A. R. A., Al-Wabel, M. I., Oleszczuk, P., & Lee, S. S. (2016). The Effects of Biochar Amendment on Soil Fertility. In Agricultural and Environmental Applications of Biochar: Advances and Barriers (pp. 123-144). https://doi.org/10.2136/sssaspecpub63.2014.0040
Igwe, C. A., Nwite, J. C., Agharanya, K. U., Watanabe, Y., Obalum, S. E., Okebalama, C. B., & Wakatsuki, T. (2013). Aggregate-associated soil organic carbon and total nitrogen following amendment of puddled and sawah-managed rice soils in southeastern Nigeria. Archives of Agronomy and Soil Science, 59(6), 859-874. https://doi.org/10.1080/03650340.2012.684877
Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421-438. https://doi.org/10.1007/s42773-020-00067-x
Kemper, W. D., & Rosenau, R. C. (1986). Aggregate Stability and Size Distribution. In Methods of Soil Analysis (pp. 425-442). https://doi.org/10.2136/sssabookser5.1.2ed.c17
Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of The Total Environment, 505, 102-112. https://doi.org/10.1016/j.scitotenv.2014.09.096
Liu, Z., He, T., Cao, T., Yang, T., Meng, J., & Chen, W. (2017). Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. Journal of soil science and plant nutrition, 17, 515-528. https://doi.org/10.4067/S0718-95162017005000037
Nelson, D. W., & Sommers, L. E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of Soil Analysis: Part 3 Chemical Methods, 5.3 (pp. 961-1010). American Society of Agronomy Monograph No. 9, Madison WI. https://doi.org/10.2136/sssabookser5.3.c34
Njoku, C., Agwu, J. O., Uguru, B. N., Igwe, T. S., Ngene, P. N., Igwe, O. F., Ajana, A. J., & Obijianya, C. C. (2017). Soil Chemical Properties and Yield of Cucumber as Affected by Rice Husk Dust , Biochar and Woodash Applications in Abakaliki , Southeastern Nigeria. IOSR Journal of Applied Chemistry, 10(7), 61-66. http://www.iosrjournals.org/iosr-jac/papers/vol10-issue7/Version-3/L1007036166.pdf
Nwajiaku, I. M., Olanrewaju, J. S., Sato, K., Tokunari, T., Kitano, S., & Masunaga, T. (2018). Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. International Journal of Recycling of Organic Waste in Agriculture, 7(4), 269-276. https://doi.org/10.1007/s40093-018-0213-y
Nwite, J., Essien, B., Amaele, M., Obalum, S., Keke, C., & Igwe, C. (2012). Supplementary use of poultry droppings and rice-husk waste as organic amendments in Southeastern Nigeria. 1: Soil Chemical Properties and Maize Yield. Libyan Agriculture Research Center Journal International, 3(2), 90-97. https://idosi.org/larcji/3(2)12/8.pdf
Nwite, J., Keke, C., Obalum, S., Essien, J., Anaele, M., & Igwe, C. (2013). Organo-mineral Amendment Options for Enhancing Soil Fertility and Nutrient Composition and Yield of Fluted Pumpkin. International Journal of Vegetable Science, 19(2), 188-199. https://doi.org/10.1080/19315260.2012.705233
Nwite, J., Ogbodo, E., Obalum, S. E., Igbo, V., & Igwe, C. (2012). Short-term response of Soil Physical properties of an Ultisol, and Nutrient composition of Fluted Pumpkin to Organic and Inorganic Fertilizer mixtures. Journal of Biology, Agriculture and Healthcare, 2, 195-205. https://www.iiste.org/Journals/index.php/JBAH/article/view/3290
Obalum, S., Chibuike, G., Peth, S., & Ouyang, Y. (2017). Soil organic matter as sole indicator of soil degradation. Environmental monitoring and assessment, 189(4), 176. https://doi.org/10.1007/s10661-017-5881-y
Obalum, S. E., Nwite, J. C., Watanabe, Y., Igwe, C. A., & Wakatsuki, T. (2012). Comparative topsoil characterization of sawah rice fields in selected inland valleys around Bida, north-central Nigeria: physicochemical properties and fertility status. Tropical Agriculture and Development, 56(2), 39-48. https://doi.org/10.11248/jsta.56.39
Obalum, S. E., & Obi, M. E. (2014). Measured versus estimated total porosity along structure-stability gradients of coarse-textured tropical soils with low-activity clay. Environmental Earth Sciences, 72(6), 1953-1963. https://doi.org/10.1007/s12665-014-3102-3
Obalum, S. E., Okpara, I. M., Obi, M. E., & Wakatsuki, T. (2011). Short term effects of tillage-mulch practices under sorghum and soybean on organic carbon and eutrophic status of a degraded Ultisol in southeastern Nigeria. Tropical and subtropical agroecosystems, 14(2), 393-403. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/520
Ogunezi, K., Okebalama, C., & Obalum, S. (2019, 15-19 July 2019). Optimum Poultry Droppings Rate for Coarse-Loamy Ultisols Based on Soil Macro-Aggregation and Fertility Indices and Evaluation using Cucumber (Cucumis sativus). Food Basket 2019; the 43rd Annual Conference of the Soil Science Society of Nigeria (SSSN), University of Agriculture, Makurdi, Nigeria,
Okorie, E. E., Obalum, S. E., & Singh, L. (2017). The potential of fermented cottonseed oil-mill effluent as inexpensive biofertilizers and its agronomic evaluation on medium-textured tropical soil. International Journal of Recycling of Organic Waste in Agriculture, 6(2), 117-123. https://doi.org/10.1007/s40093-017-0158-6
Olaniyi, J., & Ojetayo, A. (2012). Effects of nitrogen on growth, yield, nutrient uptake and quality of celosia (Celosia argentea) varieties. Journal of Agriculture and Biological Sciences, 3(1), 227-231. http://www.globalresearchjournals.org/journal/jabs/archive/february-2012-vol-3(1)/effects-of-nitrogen-on-growth-yield-nutrient-uptake-and-quality-of-celosia-(celosia-argentea)-varieties
Oraegbunam, C. J., Obalum, S. E., Watanabe, T., Madegwa, Y. M., & Uchida, Y. (2022). Differences in carbon and nitrogen retention and bacterial diversity in sandy soil in response to application methods of charred organic materials. Applied Soil Ecology, 170, 104284. https://doi.org/10.1016/j.apsoil.2021.104284
Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil science and plant nutrition, 13, 991-1002. https://doi.org/10.4067/S0718-95162013005000078
Persaud, T., Homenauth, O., Fredericks, D., & Hamer, S. (2018). Effect of rice husk biochar as an amendment on a marginal soil in Guyana. World Environment, 8(1), 20-25. http://article.sapub.org/10.5923.j.env.20180801.03.html
Pratiwi, E. P. A., Hillary, A. K., Fukuda, T., & Shinogi, Y. (2016). The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma, 277, 61-68. https://doi.org/10.1016/j.geoderma.2016.05.006
Pratiwi, E. P. A., & Shinogi, Y. (2016). Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy and water environment, 14(4), 521-532. https://doi.org/10.1007/s10333-015-0521-z
Singh, C., Tiwari, S., Gupta, V. K., & Singh, J. S. (2018). The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. CATENA, 171, 485-493. https://doi.org/10.1016/j.catena.2018.07.042
Soinne, H., Hovi, J., Tammeorg, P., & Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 219-220, 162-167. https://doi.org/10.1016/j.geoderma.2013.12.022
Umeugokwe, C., Ugwu, V., Umeugochukwu, O., Uzoh, I., Obalum, S., Ddamulira, G., Karwani, G., & Alenoma, G. (2021). Soil fertility indices of tropical loamy sand as influenced by bambara groundnut variety, plant spacing and fertilizer type. Agro-Science, 20(1), 65-71. https://www.ajol.info/index.php/as/article/view/204977
Unagwu, B. (2019). Organic amendments applied to a degraded soil: Short term effects on soil quality indicators. African Journal of Agricultural Research, 14(4), 218-225. https://doi.org/10.5897/AJAR2018.13457
Uzoh, I., Obalum, S., & Ene, J. (2015). Mineralization rate constants, half-lives and effects of two organic amendments on maize yield and carbon-nitrogen status of loamy Ultisol in Southeastern Nigeria. Agro-Science, 14(3), 35-40. https://www.ajol.info/index.php/as/article/view/149059
Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27(2), 205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1), 235-246. https://doi.org/10.1007/s11104-009-0050-x
Varela Milla, O., Rivera, E. B., Huang, W.-J., Chien, C.-., C, & Wang, Y.-M. (2013). Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. Journal of soil science and plant nutrition, 13, 251-266. https://doi.org/10.4067/S0718-95162013005000022
Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 52(4), 489-495. https://doi.org/10.1111/j.1747-0765.2006.00065.x
Yan, S., Niu, Z., Zhang, A., Yan, H., Zhang, H., He, K., Xiao, X., Wang, N., Guan, C., & Liu, G. (2019). Biochar application on paddy and purple soils in southern China: soil carbon and biotic activity. Royal Society Open Science, 6(7), 181499. https://doi.org/10.1098/rsos.181499
Yunilasari, M., Sufardi, & Zaitun. (2020). Effects of biochar and cow manure on soil chemical properties and peanut (Arachis hypogaea L.) yields in entisol. IOP Conference Series: Earth and Environmental Science, 425(1), 012014. https://doi.org/10.1088/1755-1315/425/1/012014
Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, 32-39. https://doi.org/10.1016/j.geoderma.2013.04.018
Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169-1179. https://doi.org/10.1016/j.soilbio.2011.02.005
Refbacks
- There are currently no refbacks.