Modeling the responses of Coffee (Coffea arabica L.) distribution to current and future climate change in Jimma Zone, Ethiopia
Abstract
Keywords
Full Text:
PDFReferences
Abdelaal, M., Fois, M., Fenu, G., & Bacchetta, G. (2019). Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecological Informatics, 50, 68-75. https://doi.org/10.1016/j.ecoinf.2019.01.003
Abolmaali, S. M.-R., Tarkesh, M., & Bashari, H. (2018). MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43, 116-123. https://doi.org/10.1016/j.ecoinf.2017.10.002
Aderolu, I. A., Babalola, F. D., Ugioro, O., Anagbogu, C. F., Ndagi, I., Mokwunye, F. C., Mokwunye, I. U., Idrisu, M., & Asogwa, E. U. (2014). Production and marketing of Coffee (Coffea robusta) in Kogi State, Nigeria: Challenges and recommendation for intervention. JOURNAL OF SOCIAL SCIENCE RESEARCH, 3(2), 207-215. https://doi.org/10.24297/jssr.v3i2.3559
Alemayehu, M. (2015). Ethiopian Highlands: Home for Arabica Coffee (Coffea arabica L.). In Tropical lakes in a changing environment: water, land, biology, climate and humans (pp. 58-65). https://www.researchgate.net/profile/Melkamu-Workie/publication/317231826_Ethiopian_Highlands_Home_for_Arabica_Coffee_Coffea_arabica_L/links/592d1b0f0f7e9b9979b3a3da/Ethiopian-Highlands-Home-for-Arabica-Coffee-Coffea-arabica-L.pdf
Amamo, A. A. (2014). Coffee production and marketing in Ethiopia. Eur J Bus Manag, 6(37), 109-122. https://www.iiste.org/Journals/index.php/EJBM/article/view/18697
Angelieri, C. C. S., Adams-Hosking, C., Ferraz, K. M. P. M. d. B., de Souza, M. P., & McAlpine, C. A. (2016). Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation. PLOS ONE, 11(1), e0145232. https://doi.org/10.1371/journal.pone.0145232
Bliss, S. (2017). Coffee Biomes. Geography Bulletin, 49(4), 29-41. https://www.gtansw.org.au/files/geog_bulletin/2017/4_2017/06_GTA%20NSW%20Bulletin_Issue%204_2017_Coffee%20Biomes.pdf
Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77. https://doi.org/10.1016/j.ecolmodel.2013.12.012
Brázdil, R., Trnka, M., Mikšovský, J., Řezníčková, L., & Dobrovolný, P. (2015). Spring-summer droughts in the Czech Land in 1805–2012 and their forcings. International Journal of Climatology, 35(7), 1405-1421. https://doi.org/10.1002/joc.4065
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 5(1), 180254. https://doi.org/10.1038/sdata.2018.254
Bunn, C. (2015). Modeling the climate change impacts on global coffee production [Dissertation, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät]. https://doi.org/10.18452/17349
Camargo, M. B. P. d. (2010). The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, 69(1), 239-247. https://doi.org/10.1590/S0006-87052010000100030
Chauhan, R., Hooda, M., & Tanga, A. A. (2015). Coffee: the backbone of Ethiopian economy. International Journal of Economic Plants, 1(2), 82-86. http://pphouse.org/upload_article/83447731_6_IJEP_February_2015_Chauhan_et_al.pdf
Chemura, A., Kutywayo, D., Chidoko, P., & Mahoya, C. (2016). Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe. Regional Environmental Change, 16(2), 473-485. https://doi.org/10.1007/s10113-015-0762-9
Chiou, C.-R., Hsieh, T.-Y., & Chien, C.-C. (2015). Plant bioclimatic models in climate change research. Botanical Studies, 56(1), 26. https://doi.org/10.1186/s40529-015-0104-8
Coffee: World Markets and Trade. (2019). World Agricultural Outlook Board/USDA. https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/xk81jw68v/kp78gs60d/coffee.pdf
Cuneen, J., & Tobar, D. (2015). Chi-square Tests. In Sport Industry Research and Analysis: An Approach to Informed Decision Making. Routledge, New York. https://doi.org/10.4324/9781315212944-28
Davis, A. P., Gole, T. W., Baena, S., & Moat, J. (2012). The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities. PLOS ONE, 7(11), e47981. https://doi.org/10.1371/journal.pone.0047981
Deribe, H. (2019). Review on Factors which Affect Coffee (Coffea Arabica L.) Quality in South Western, Ethiopia. International Journal of Forestry and Horticulture, 5(1), 12-19. https://doi.org/10.20431/2454-9487.0501003
Diro, S., Erko, B., & Yami, M. (2019). Cost of Production of Coffee in Jimma Zone, Southwest Ethiopia. Ethiopian Journal of Agricultural Sciences, 29(3), 13-28. https://www.ajol.info/index.php/ejas/article/download/189554/178783
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
Funk, C. C., Rowland, J., Eilerts, G., Kebebe, E., Biru, N., White, L., & Galu, G. (2012). A climate trend analysis of Ethiopia [Report](2012-3053). (Fact Sheet, Issue. U. S. G. Survey. http://pubs.er.usgs.gov/publication/fs20123053
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression Models. The American Statistician, 73(3), 307-309. https://doi.org/10.1080/00031305.2018.1549100
Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64-77. https://doi.org/10.1016/j.ydbio.2016.07.023
Halligan, S., Altman, D. G., & Mallett, S. (2015). Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach. European Radiology, 25(4), 932-939. https://doi.org/10.1007/s00330-014-3487-0
Intergovernmental Panel on Climate Change. (2014). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
Iscaro, J. (2014). The impact of climate change on coffee production in Colombia and Ethiopia. Global Majority E-Journal, 5(1), 33-43. http://bangladeshstudies.org/files/Global_Majority_e_Journal_5_1.pdf#page=33
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122
Kwon, Y., Lee, T., Lang, A., & Burnette, D. (2019). Assessment on latitudinal tree species richness using environmental factors in the southeastern United States. PeerJ, 7, e6781. https://doi.org/10.7717/peerj.6781
Mas, J.-F., Soares Filho, B., Pontius, R. G., Farfán Gutiérrez, M., & Rodrigues, H. (2013). A Suite of Tools for ROC Analysis of Spatial Models. ISPRS International Journal of Geo-Information, 2(3), 869-887. https://doi.org/10.3390/ijgi2030869
McHugh, M. L. (2013). The chi-square test of independence. Biochemia medica, 23(2), 143-149. https://doi.org/10.11613/BM.2013.018
Melesse, S. F. (2014). Covariates and latents in growth modelling [Doctoral dissertation, University of Kwazulu-Natal]. Pietermaritzburg. http://hdl.handle.net/10413/11825
Mighty, M. A. (2015). Site suitability and the analytic hierarchy process: How GIS analysis can improve the competitive advantage of the Jamaican coffee industry. Applied Geography, 58, 84-93. https://doi.org/10.1016/j.apgeog.2015.01.010
Minten, B., Stifel, D., & Tamru, S. (2014). Structural Transformation of Cereal Markets in Ethiopia. The Journal of Development Studies, 50(5), 611-629. https://doi.org/10.1080/00220388.2014.887686
Moat, J., Williams, J., Baena, S., Wilkinson, T., Gole, T. W., Challa, Z. K., Demissew, S., & Davis, A. P. (2017). Resilience potential of the Ethiopian coffee sector under climate change. Nature Plants, 3(7), 17081. https://doi.org/10.1038/nplants.2017.81
Moore, D. S. (2001). The Basic Practice of Statistics. Technometrics, 43(3), 381-381. https://doi.org/10.1198/tech.2001.s639
Moraes, G. A. B. K., Chaves, A. R. M., Martins, S. C. V., Barros, R. S., & DaMatta, F. M. (2010). Why is it better to produce coffee seedlings in full sunlight than in the shade? A morphophysiological approach. Photosynthetica, 48(2), 199-207. https://doi.org/10.1007/s11099-010-0025-4
National Meteorological Services Agency. (2005). Agrometeorological bulletin. Seasonal Agro Meteorological Bulletin, 15(3), 1-19. http://www.wamis.org/countries/ethiopia/Eth20051503.pdf
O'Donnel, M. S., & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States [Report](691). (Data Series, Issue. U. S. G. Survey. http://pubs.er.usgs.gov/publication/ds691
Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics, 22, 36-43. https://doi.org/10.1016/j.ecoinf.2014.04.002
Paquit, J. (2019). Maxent Modeling Training Manual in ArcGIS 10. https://doi.org/10.13140/RG.2.2.21119.97448
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
Pohlan, H. A. J., & Janssens, M. J. J. (2010). Growth and Production of Coffee. In W. H. Verheye (Ed.), Soils, Plant Growth and Crop Production. UNESCO-Encyclopedia of Life Support System. https://www.eolss.net/ebooklib/bookinfo/soils-plant-growth-crop-production.aspx#
Potopová, V., Štěpánek, P., Možný, M., Türkott, L., & Soukup, J. (2015). Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agricultural and Forest Meteorology, 202, 26-38. https://doi.org/10.1016/j.agrformet.2014.11.022
Pramanik, M., Paudel, U., Mondal, B., Chakraborti, S., & Deb, P. (2018). Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Climate Risk Management, 19, 94-105. https://doi.org/https://doi.org/10.1016/j.crm.2017.11.002
Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., Xu, G., & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146. https://doi.org/https://doi.org/10.1016/j.gecco.2017.02.004
Samper, L. F., & Quiñones-Ruiz, X. F. (2017). Towards a Balanced Sustainability Vision for the Coffee Industry. Resources, 6(2). https://doi.org/10.3390/resources6020017
Somarriba, E., & López Sampson, A. (2018). Coffee and Cocoa Agroforestry Systems: Pathways to Deforestation, Reforestation, and Tree Cover Change. In LEAVES - Leveraging Agricultural Value Chains to Enhance Tropical Tree Cover and Slow Deforestation. International Bank for Reconstruction and Development / The World Bank https://doi.org/10.13140/RG.2.2.29700.78724
Song, B., Niu, S., & Wan, S. (2016). Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. Journal of Plant Ecology, 9(5), 531-541. https://doi.org/10.1093/jpe/rtw010
Steffen, W., Rice, M., Hughes, L., & Dean, A. (2018). The good, the bad and the ugly: limiting temperature rise to 1.5°C. https://www.climatecouncil.org.au/wp-content/uploads/2018/10/CC-IPCC-report-1.pdf
Svoboda, M. D., & Fuchs, B. A. (2017). Handbook of Drought Indicators and Indices. In D. A. Wilhite & R. S. Pulwarty (Eds.), Drought and Water Crises: Integrating Science, Management, and Policy (2nd ed.). CRC Press. https://doi.org/10.1201/b22009
USDA Foreign Agricultural Service. (2019). Ethiopia Coffee Annual Coffee Annual Report. G. A. I. Network. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Coffee%20Annual_Addis%20Ababa_Ethiopia_5-29-2019.pdf
Vegro, C. L. R., & de Almeida, L. F. (2020). Chapter 1 - Global coffee market: Socio-economic and cultural dynamics. In L. F. de Almeida & E. E. Spers (Eds.), Coffee Consumption and Industry Strategies in Brazil (pp. 3-19). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814721-4.00001-9
Wan, P., & Davis, R. A. (2020). Goodness-of-fit testing for time series models via distance covariance. Journal of Econometrics. https://doi.org/10.1016/j.jeconom.2020.05.008
Wang, N., Jassogne, L., van Asten, P. J. A., Mukasa, D., Wanyama, I., Kagezi, G., & Giller, K. E. (2015). Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. European Journal of Agronomy, 63, 1-11. https://doi.org/10.1016/j.eja.2014.11.003
Wang, X., Jiang, B., & Liu, J. S. (2017). Generalized R-squared for detecting dependence. Biometrika, 104(1), 129-139. https://doi.org/10.1093/biomet/asw071
Woldesenbet, A. G., Woldeyes, B., & Chandravanshi, B. S. (2015). Wet coffee processing waste management practice in Ethiopia. Asian Journal of Science and Technology, 6(05), 1467-1471. http://www.journalajst.com/sites/default/files/issues-pdf/Dwonload%202205.pdf
Yuvaraj, R. M. (2020). Extents of Predictors for Land Surface Temperature Using Multiple Regression Model. The Scientific World Journal, 2020, 3958589. https://doi.org/10.1155/2020/3958589
Refbacks
- There are currently no refbacks.