Formulation of bacterial consortium for improvement growth and yield of maize (Zea mays L.)

Ali Ikhwan, Aniek Iriany, Erny Ishartati, Faridlotul Hasanah

Abstract

Plant growth-promoting bacteria (PGPB) have become an important subject of research to increase maize production. The PGPB consortium should provide more benefits than single or dual inoculation. This study aimed to investigate the effect of a PGPB consortium on improving maize growth and yield. The field experiment used a split-plot design. The main plot consisted of three maize varieties (Talenta, Pertiwi-3, and Bisma), and the subplot consisted of three formulations of PGPB consortia [endophytic bacteria isolates, Acetobacter sp., cellulolytic, and ligninolytic (F1); endophytic bacteria isolates, Azospirillum sp., cellulolytic, and ligninolytic (F2); and endophytic bacteria isolates, cellulolytic, ligninolytic, Acetobacter sp., and Azospirillum sp. (F3)] and one control. PGPB consortia formulation did not influence maize growth significantly, but maize varieties did. Pertiwi-3 showed the highest value in all growth variables, followed by Bisma and Talenta, respectively. The effect of PGPB consortia formulation upon ear fresh and dry weight depends upon the maize variety, and Pertiwi-3 showed the highest value in yield variables. PGPB consortia formulation 2 was the most effective to apply for Pertiwi-3 cultivation, while PGPB consortia formulation 3 produced higher yields for Talenta and Bisma. These findings indicated that specific PGPB formula could improve the yield for specific maize varieties.

Keywords

Crop productivity; Maize; PGPB consortium

Full Text:

PDF

References

Abiala, M. A., Odebode, A. C., Hsu, S. F., Blackwood, C. B., & Voordouw, G. (2015). Phytobeneficial Properties of Bacteria Isolated from the Rhizosphere of Maize in Southwestern Nigerian Soils. Applied and Environmental Microbiology, 81(14), 4736-4743. https://doi.org/10.1128/AEM.00570-15

Agbodjato, N. A., Noumavo, P. A., Baba-Moussa, F., Salami, H. A., Sina, H., Sèzan, A., Bankolé, H., Adjanohoun, A., & Baba-Moussa, L. (2015). Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Maize (Zea mays L.) in Central and Northern Benin (West Africa). Applied and Environmental Soil Science, 2015, 901656. https://doi.org/10.1155/2015/901656

Akhtar, N., Naveed, M., Khalid, M., Ahmad, N., Rizwan, M., & Siddique, S. (2018). Effect of bacterial consortia on growth and yield of maize grown in Fusarium infested soil. Soil & Environment, 37(1). https://doi.org/10.25252/SE/18/872

Arsita, R., Karim, H., Hala, Y., Iriany, N., & Jumadi, O. (2020). Isolation and identification of nitrogen-fixing bacteria in the corn rhizosphere (Zea mays L.) originating from Jeneponto Regency, South Sulawesi. IOP Conference Series: Earth and Environmental Science,

Cassán, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45(1), 28-35. https://doi.org/https://doi.org/10.1016/j.ejsobi.2008.08.005

Curá, J. A., Franz, D. R., Filosofía, J. E., Balestrasse, K. B., & Burgueño, L. E. (2017). Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress. Microorganisms, 5(3), 41. https://www.mdpi.com/2076-2607/5/3/41

Di Salvo, L. P., Cellucci, G. C., Carlino, M. E., & García de Salamone, I. E. (2018). Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Applied Soil Ecology, 126, 113-120. https://doi.org/https://doi.org/10.1016/j.apsoil.2018.02.010

Fitriatin, B. N., Suryatmana, P., Yuniarti, A., & Istifadah, N. (2017). The Application of Phosphate Solubilizing Microbes Biofertilizer to Increase Soil P and Yield of Maize on Ultisols Jatinangor. KnE Life Sciences, 2(6). https://doi.org/10.18502/kls.v2i6.1037

Fukami, J., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2016). Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, 6(1), 3. https://doi.org/10.1186/s13568-015-0171-y

Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., & Srinivas, V. (2016). Formulations of plant growth-promoting microbes for field applications. In Microbial Inoculants in Sustainable Agricultural Productivity (pp. 239-251). Springer.

Irfan, M., Zahir, A., Asghar, H. N., Khan, M. Y., Ahmad, H. T., & Ali, Q. (2019). Effect of multi-strain bacterial inoculation with different carriers on growth and yield of maize under saline conditions. Int. J. Agric. Biol, 22, 1407-1414. http://www.fspublishers.org/Issue.php?no_download=published_papers/1577440906_21%20doi%2015.1215%20IJAB-18-1225%20(8)%201407-1414.pdf&issue_id=40981

Jambhulkar, P. P., Sharma, P., & Yadav, R. (2016). Delivery systems for introduction of microbial inoculants in the field. In Microbial inoculants in sustainable agricultural productivity (pp. 199-218). Springer.

Jhala, Y., Shelat, H., & Panpatte, D. (2016). Efficacy Testing of Acetobacter and Azospirillum Isolates on Maize cv. GM-3. Journal of Agricultural Science and Food Research, 7(1), 1-6. https://doi.org/10.4172/2471-2728.1000164

Kumar, M., Singh, D. P., Prabha, R., Rai, A. K., & Sharma, L. (2016). Role of microbial inoculants in nutrient use efficiency. In Microbial Inoculants in Sustainable Agricultural Productivity (pp. 133-142). Springer.

Kurniawan, W. (2016). Kajian Pemberian Bakteri Endofitik terhadap Pertumbuhan dan Hasil pada Beberapa Varietas Tanaman Jagung (Zea mays L.) University of Muhammadiyah Malang].

Li, S., Nadolnyak, D., & Hartarska, V. (2019). Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area. Land Use Policy, 80, 380-390. https://doi.org/https://doi.org/10.1016/j.landusepol.2018.10.016

Lin, Y., Watts, D. B., Kloepper, J. W., & Torbert, H. A. (2018). Influence of Plant Growth-Promoting Rhizobacteria on Corn Growth Under Different Fertility Sources. Communications in Soil Science and Plant Analysis, 49(10), 1239-1255. https://doi.org/10.1080/00103624.2018.1457155

Malusà, E., Pinzari, F., & Canfora, L. (2016). Efficacy of biofertilizers: challenges to improve crop production. In Microbial inoculants in sustainable agricultural productivity (pp. 17-40). Springer. https://doi.org/10.1007/978-81-322-2644-4

Maryamah, U., Sutjahjo, S. H., & Nindita, A. (2017). Evaluasi Penampilan Sifat Hortikultura dan Potensi Hasil pada Jagung Manis dan Jagung Ketan. Buletin Agrohorti, 5(1), 88-97. https://journal.ipb.ac.id/index.php/bulagron/article/view/15896

Mcdonald, G., & Meylinah, S. (2019). Indonesia Grain and Feed Annual Report 2019. http://www.usdaindonesia.org/indonesia-grain-and-feed-annual-report-2019/

Mehta, C., Emmanuel, B., Kesarwani, A., Sirari, K., & Sharma, A. K. (2016). Nutrient management strategies based on microbial functions. In Microbial inoculants in sustainable agricultural productivity (pp. 143-163). Springer.

Moretti, L. G., Crusciol, C. A. C., Bossolani, J. W., Momesso, L., Garcia, A., Kuramae, E. E., & Hungria, M. (2020). Bacterial Consortium and Microbial Metabolites Increase Grain Quality and Soybean Yield. Journal of Soil Science and Plant Nutrition, 20(4), 1923-1934. https://doi.org/10.1007/s42729-020-00263-5

Nezarat, S., & Gholami, A. (2009). Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize. Pakistan journal of biological sciences, 12(1), 26. https://doi.org/10.3923/pjbs.2009.26.32

Olanrewaju, O. S., & Babalola, O. O. (2019). Bacterial Consortium for Improved Maize (Zea mays L.) Production. Microorganisms, 7(11), 519. https://www.mdpi.com/2076-2607/7/11/519

Panikkai, S., Nurmalina, R., Mulatsih, S., & Purwati, H. (2017). Analisis Ketersediaan Jagung Nasional Menuju Swasembada dengan Pendekatan Model Dinamik. Informatika Pertanian, 26(1), 41-48. https://doi.org/10.21082/ip.v26n1.2017.p41-48

Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5), 325-336. https://doi.org/https://doi.org/10.1016/j.micres.2013.09.011

Pesireron, M., & Senewe, R. E. (2011). Keragaan 10 Galur/Varietas Jagung Komposit dan Hibrida pada Agroekosistem Lahan Kering di Maluku. Budidaya Pertanian, 7(2), 53-59. https://ejournal.unpatti.ac.id/ppr_iteminfo_lnk.php?id=32

Prasetyo, R. A., Soetopo, L., & Sugiharto, A. N. (2018). Uji Daya Hasil 12 Calon Varietas Jagung Hibrida. Jurnal Produksi Tanaman, 6(9), 2354-2362.

Purwanto, Agustono, T., Widjonarko, B. R., & Widiatmoko, T. (2019). Indol Acetic Acid Production of Indigenous Plant Growth Promotion Rhizobacteria from Paddy Soil [PGPR; rice; germination; IAA; vigor index.]. 2019, 7(1), 7. https://doi.org/10.18196/pt.2019.087.1-7

Richard, P. O., Adekanmbi, A. O., & Ogunjobi, A. A. (2018). Screening of bacteria isolated from the rhizosphere of maize plant (Zea mays L.) for ammonia production and nitrogen fixation. African Journal of Microbiology Research, 12(34), 829-834. https://doi.org/10.5897/AJMR2018.8957

Santos, M. S., Nogueira, M. A., & Hungria, M. (2019). Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9(1), 205. https://doi.org/10.1186/s13568-019-0932-0

Shah, P., & Freedman, E. G. (2011). Bar and Line Graph Comprehension: An Interaction of Top-Down and Bottom-Up Processes. Topics in Cognitive Science, 3(3), 560-578. https://doi.org/https://doi.org/10.1111/j.1756-8765.2009.01066.x

Sirari, K., Kashyap, L., & Mehta, C. (2016). Stress management practices in plants by microbes. In Microbial Inoculants in Sustainable Agricultural Productivity (pp. 85-99). Springer.

Sondang, Y., Anty, K., & Siregar, R. (2019). Identification of endophytic and rhizosphere bacteria in maize (Zea mays L.) in Limapuluh Kota Region, West Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science,

Tchakounté, G. V. T., Berger, B., Patz, S., Fankem, H., & Ruppel, S. (2018). Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiological Research, 214, 47-59. https://doi.org/https://doi.org/10.1016/j.micres.2018.05.008

Ullah, N., Ditta, A., Khalid, A., Mehmood, S., Rizwan, M. S., Ashraf, M., Mubeen, F., Imtiaz, M., & Iqbal, M. M. (2020). Integrated Effect of Algal Biochar and Plant Growth Promoting Rhizobacteria on Physiology and Growth of Maize Under Deficit Irrigations. Journal of Soil Science and Plant Nutrition, 20(2), 346-356. https://doi.org/10.1007/s42729-019-00112-0

Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What Is Sustainable Agriculture? A Systematic Review. Sustainability, 7(6), 7833-7865. https://www.mdpi.com/2071-1050/7/6/7833

Wen, X.-y., Dubinsky, E., Wu, Y., Yu, R., & Chen, F. (2016). Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop's rhizosphere. Journal of Integrative Agriculture, 15(8), 1892-1902. https://doi.org/https://doi.org/10.1016/S2095-3119(15)61147-9

Youseif, S. H. (2018). Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Annals of Agricultural Sciences, 63(1), 25-35. https://doi.org/https://doi.org/10.1016/j.aoas.2018.04.002

Zayed, M. S. (2016). Advances in formulation development technologies. In Microbial Inoculants in Sustainable Agricultural Productivity (pp. 219-237). Springer.

Zulfahmi, R., Bangun, M. K., & Rosmayati, R. (2013). Respons Pertumbuhan Dan Produksi Tanaman Jagung (Zea Mays L.) Varietas Nonhibrida Dan Hibrida Terhadap Pemberian Bokashi Dan Pupuk Kalium. Jurnal Agroekoteknologi Universitas Sumatera Utara, 1(3), 95181. https://jurnal.usu.ac.id/index.php/agroekoteknologi/article/view/2936

Refbacks

  • There are currently no refbacks.