Distribution of nickel (Ni) in peatland situated alongside mineral soil derived from ultrabasic rocks

Heru Bagus Pulunggono, Moh Zulfajrin, Fuadi Irsan

Abstract

Detailed studies of Ni distribution in peat that is influenced by Ni-rich soil derived from ultrabasic rocks are still limited. The objective of this study was to reveal the characteristics of Ni in peat from Morowali (Central Sulawesi Province, Indonesia) at several depths and distances from the boundary of the ultrabasic mineral soil. Peat was sampled from depths of 0–30, 30–60, and 60–90 cm at distances of 100, 200, 300, 400, 500, and 600 m from the border of the ultrabasic mineral soil in March 2018. Ni characteristics were examined through their total, exchangeable, water-soluble, and adsorbed distributions. The relationships between Ni and some peat chemical properties such as pH; cation exchange capacity; macronutrient contents of K, Ca, and Mg; and micronutrient contents of Fe, Cu and Zn were also observed. The high Ni content in peat at the study transect is caused by an accumulation of Ni transported from elevated areas of mineral soil. Most Ni in peat is bonded to the soil organic exchange complexes. Accumulation of the mineral soil fraction in the peat surface is indicated at distances of 100–400 meters from the ultrabasic mineral soil. Ni distribution in peat at the study transect is mainly governed by a combination of Fe, pH, organic material, water content, peat depth, and distance from ultrabasic mineral soil.

Keywords

Nickel characteristics; Peat; Ultrabasic mineral soil; Morowali

Full Text:

PDF

References

Abat, M., McLaughlin, M. J., Kirby, J. K., & Stacey, S. P. (2012). Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia. Geoderma, 175-176, 58-63. https://doi.org/10.1016/j.geoderma.2012.01.024

Abd_Allah, E. F., Hashem, A., Alam, P., & Ahmad, P. (2019). Silicon Alleviates Nickel-Induced Oxidative Stress by Regulating Antioxidant Defense and Glyoxalase Systems in Mustard Plants. Journal of Plant Growth Regulation, 38(4), 1260-1273. https://doi.org/10.1007/s00344-019-09931-y

Alves, S., Trancoso, M. A., Gonçalves, M. d. L. S., & Correia dos Santos, M. M. (2011). A nickel availability study in serpentinised areas of Portugal. Geoderma, 164(3), 155-163. https://doi.org/10.1016/j.geoderma.2011.05.019

Amjad, M., Raza, H., Murtaza, B., Abbas, G., Imran, M., Shahid, M., Naeem, M. A., Zakir, A., & Iqbal, M. M. (2020). Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea mays L.) Hybrids. Plants, 9(1), 5. https://doi.org/10.3390/plants9010005

Anda, M. (2012). Cation imbalance and heavy metal content of seven Indonesian soils as affected by elemental compositions of parent rocks. Geoderma, 189-190, 388-396. https://doi.org/10.1016/j.geoderma.2012.05.009

Antić-Mladenović, S., Frohne, T., Kresović, M., Stärk, H.-J., Tomić, Z., Ličina, V., & Rinklebe, J. (2017). Biogeochemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization. Journal of Environmental Management, 186, 141-150. https://doi.org/10.1016/j.jenvman.2016.06.005

Antić-Mladenović, S., Rinklebe, J., Frohne, T., Stärk, H.-J., Wennrich, R., Tomić, Z., & Ličina, V. (2011). Impact of controlled redox conditions on nickel in a serpentine soil. Journal of Soils and Sediments, 11(3), 406-415. https://doi.org/10.1007/s11368-010-0325-0

Armanto, M. E. (2019). Comparison of Chemical Properties of Peats under Different Land Uses in South Sumatra, Indonesia [journal article]. Journal of Ecological Engineering, 20(5), 184-192. https://doi.org/10.12911/22998993/105440

Awasthi, K., & Sinha, P. (2013). Nickel stress induced antioxidant defence system in sponge gourd (Luffa cylindrical). Journal of Plant Physiology & Pathology, 1(1), 5. https://doi.org/10.4172/2329-955X.1000102

Aziz, H., Sabir, M., Ahmad, H. R., Aziz, T., Zia‐ur‐Rehman, M., Hakeem, K. R., & Ozturk, M. (2015). Alleviating effect of calcium on nickel toxicity in rice. Clean–Soil, Air, Water, 43(6), 901-909. https://doi.org/10.1002/clen.201400085

Banerjee, A., & Roychoudhury, A. (2020). Plant Responses to Environmental Nickel Toxicity. In Plant Micronutrients (pp. 101-111). Springer. https://doi.org/10.1007/978-3-030-49856-6

Bani, A., Echevarria, G., Montargès-Pelletier, E., Gjoka, F., Sulçe, S., & Morel, J. L. (2014). Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environmental Monitoring and Assessment, 186(7), 4431-4442. https://doi.org/10.1007/s10661-014-3709-6

Bartczak, P., Norman, M., Klapiszewski, Ł., Karwańska, N., Kawalec, M., Baczyńska, M., Wysokowski, M., Zdarta, J., Ciesielczyk, F., & Jesionowski, T. (2018). Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arabian Journal of Chemistry, 11(8), 1209-1222. https://doi.org/10.1016/j.arabjc.2015.07.018

Cabala, J., Smieja-Król, B., Jablonska, M., & Chrost, L. (2013). Mineral components in a peat deposit: looking for signs of early mining and smelting activities in Silesia–Cracow region (Southern Poland). Environmental Earth Sciences, 69(8), 2559-2568. https://doi.org/10.1007/s12665-012-2080-6

Campillo-Cora, C., Conde-Cid, M., Arias-Estévez, M., Fernández-Calviño, D., & Alonso-Vega, F. (2020). Specific Adsorption of Heavy Metals in Soils: Individual and Competitive Experiments. Agronomy, 10(8), 1113. https://www.mdpi.com/2073-4395/10/8/1113

D’Amico, M. E., & Previtali, F. (2012). Edaphic influences of ophiolitic substrates on vegetation in the Western Italian Alps. Plant and Soil, 351(1), 73-95. https://doi.org/10.1007/s11104-011-0932-6

Das, K. K., Reddy, R. C., Bagoji, I. B., Das, S., Bagali, S., Mullur, L., Khodnapur, J. P., & Biradar, M. S. (2019). Primary concept of nickel toxicity – an overview. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 141-152. https://doi.org/doi:10.1515/jbcpp-2017-0171

de Macedo, F. G., Bresolin, J. D., Santos, E. F., Furlan, F., Lopes da Silva, W. T., Polacco, J. C., & Lavres, J. (2016). Nickel Availability in Soil as Influenced by Liming and Its Role in Soybean Nitrogen Metabolism [Original Research]. Frontiers in Plant Science, 7(1358). https://doi.org/10.3389/fpls.2016.01358

Di Giuseppe, D., Melchiorre, M., Faccini, B., Ferretti, G., & Coltorti, M. (2017). Effects of middle-term land reclamation on nickel soil-water interaction: a case study from reclaimed salt marshes of Po River Delta, Italy. Environmental Monitoring and Assessment, 189(10), 523. https://doi.org/10.1007/s10661-017-6240-8

Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of Floodplain Soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the Impact of Pre-definite Redox Variations on the Mobility of These Elements. Soil and Sediment Contamination: An International Journal, 23(7), 779-799. https://doi.org/10.1080/15320383.2014.872597

Fu, W., Yang, J., Yang, M., Pang, B., Liu, X., Niu, H., & Huang, X. (2014). Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. Journal of Asian Earth Sciences, 93, 74-88. https://doi.org/10.1016/j.jseaes.2014.06.030

Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health, 17(3), 679. https://www.mdpi.com/1660-4601/17/3/679

GIA, G. I. A. B. B. I. G. (2020). National Digital Elevation Model. Tiles: 2213-433_v1.0; 2213-431_v1.0; 2113-644_v1.0; and 2113-642_v1.0. Badan Informasi Geospasial. Cibinong (ID). http://tides.big.go.id/DEMNAS/DEMNAS.php

Gonnelli, C., & Renella, G. (2013). Chromium and nickel. In B. Alloway (Ed.), Heavy Metals in Soils. Environmental Pollution (Vol. 22, pp. 313-333). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_11

Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Aamer, M., Nawaz, M., Ali, A., Khan, M. A. U., & Khan, T. A. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environmental Science and Pollution Research, 26(13), 12673-12688. https://doi.org/10.1007/s11356-019-04892-x

Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M., Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F., Vining, S. R., Hough, M. A., Moore, T. R., Richard, P. J. H., De La Cruz, F. B., Toufaily, J., Hamdan, R., Cooper, W. T., & Chanton, J. P. (2018). Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications, 9(1), 3640. https://doi.org/10.1038/s41467-018-06050-2

Hosokawa, S., Konuma, S., & Nakamura, Y. (2016). Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb) in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L. PLoS One, 11(6), e0157983. https://doi.org/10.1371/journal.pone.0157983

Jagetiya, B., Soni, A., & Yadav, S. (2013). Effect of nickel on plant water relations and growth in green gram. Indian Journal of Plant Physiology, 18(4), 372-376. https://doi.org/10.1007/s40502-013-0053-8

Jiang, X., Zou, B., Feng, H., Tang, J., Tu, Y., & Zhao, X. (2019). Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. Journal of Geochemical Exploration, 196, 1-7. https://doi.org/10.1016/j.gexplo.2018.10.002

Jiang, Y., Gu, X., Zhu, B., & Gu, C. (2017). Development and validation of abiotic ligand model for nickel toxicity to wheat (Triticum aestivum). Journal of Environmental Sciences, 62, 22-30. https://doi.org/10.1016/j.jes.2017.06.005

Khair, K. U., Farid, M., Ashraf, U., Zubair, M., Rizwan, M., Farid, S., Ishaq, H. K., Iftikhar, U., & Ali, S. (2020). Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. Environmental Science and Pollution Research, 27(21), 27010-27022. https://doi.org/10.1007/s11356-020-08978-9

Koistinen, M. P., Kujala, K., & Rönkkömäki, H. (2015). Adsorption of Ni(II) and Cd(II) in Compacted Peat and the Utilization of the Adsorption Properties in Hydraulic-Barrier Layers in Tailing Impoundments. Journal of Environmental Engineering, 141(5), 04014086. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000916

Lin, Y., Di Toro, D. M., & Allen, H. E. (2015). Development and validation of a terrestrial biotic ligand model for Ni toxicity to barley root elongation for non-calcareous soils. Environmental Pollution, 202, 41-49. https://doi.org/10.1016/j.envpol.2015.03.015

Ma, Y., Lombi, E., McLaughlin, M. J., Oliver, I. W., Nolan, A. L., Oorts, K., & Smolders, E. (2013). Aging of nickel added to soils as predicted by soil pH and time. Chemosphere, 92(8), 962-968. https://doi.org/10.1016/j.chemosphere.2013.03.013

Mahmood, S., Ishtiaq, S., Yasin, G., & Irshad, A. (2016). Dose dependent rhizospheric Ni toxicity evaluation: Membrane stability and antioxidant potential of Vigna species. Chilean journal of agricultural research, 76, 378-384. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392016000300017&nrm=iso

Melo, C. d. A., Oliveira, L. K. d., Goveia, D., Fraceto, L. F., & Rosa, A. H. (2014). Enrichment of tropical peat with micronutrients for agricultural applications: evaluation of adsorption and desorption processes. Journal of the Brazilian Chemical Society, 25(1), 36-49. https://doi.org/10.5935/0103-5053.20130265

Nelvia, N. (2018). The Use of Fly Ash in Peat Soil on the Growth and Yield of Rice. AGRIVITA, Journal of Agricultural Science, 40(3), 527-535. https://doi.org/10.17503/agrivita.v40i3.793

Nishida, S., Kato, A., Tsuzuki, C., Yoshida, J., & Mizuno, T. (2015). Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana. International Journal of Molecular Sciences, 16(5), 9420-9430. https://www.mdpi.com/1422-0067/16/5/9420

Nurzakiah, S., Sabiham, S., Nugroho, B., & Nursyamsi, D. (2014). Estimation of the potential carbon emission from acrotelmic and catotelmic peats. Journal of Tropical Soils, 19(2), 81-89. https://doi.org/10.5400/jts.2014.v19i2.81-89

Nurzakiah, S., Wakhid, N., & Hairani, A. (2020). Carbon dioxide emission and peat hydrophobicity in tidal peatlands. SAINS TANAH-Journal of Soil Science and Agroclimatology, 17(1), 71-77. https://doi.org/10.20961/stjssa.v17i1.41153

Olafisoye, O. B., Fatoki, O. S., Oguntibeju, O. O., & Osibote, O. A. (2020). Accumulation and risk assessment of metals in palm oil cultivated on contaminated oil palm plantation soils. Toxicology Reports, 7, 324-334. https://doi.org/10.1016/j.toxrep.2020.01.016

Osakwe, S. A. (2013). Chemical partitioning of iron, cadmium, nickel and chromium in contaminated soils of south-eastern Nigeria. Chemical Speciation & Bioavailability, 25(1), 71-78. https://doi.org/10.3184/095422913X13581872822530

Pulunggono, H. B., Anwar, S., Mulyanto, B., & Sabiham, S. (2019). Dinamika Hara Gambut Pada Penggunaan Lahan Hutan Sekunder, Semak Dan Kebun Kelapa Sawit. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 9(3), 692-699. https://doi.org/10.29244/jpsl.9.3.692-699

Pulunggono, H. B., Zulfajrin, M., & Hartono, A. (2020). Distribusi Sifat Kimia Gambut di Perkebunan Sawit dan Hubungannya dengan Kedalaman Lapisan Gambut dan Jarak dari Tanah Mineral Berbahan Induk Batuan Ultrabasa. Jurnal Ilmu Tanah dan Lingkungan, 22(1). https://doi.org/10.29244/jitl.22.1.22-28

Rajapaksha, A. U., Vithanage, M., Oze, C., Bandara, W. M. A. T., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189-190, 1-9. https://doi.org/10.1016/j.geoderma.2012.04.019

Rinklebe, J., Antić-Mladenović, S., Frohne, T., Stärk, H.-J., Tomić, Z., & Ličina, V. (2016). Nickel in a serpentine-enriched Fluvisol: Redox affected dynamics and binding forms. Geoderma, 263, 203-214. https://doi.org/10.1016/j.geoderma.2015.09.004

Rinklebe, J., & Shaheen, S. M. (2014). Assessing the Mobilization of Cadmium, Lead, and Nickel Using a Seven-Step Sequential Extraction Technique in Contaminated Floodplain Soil Profiles Along the Central Elbe River, Germany. Water, Air, & Soil Pollution, 225(8), 2039. https://doi.org/10.1007/s11270-014-2039-1

Ritung, S., Suryani, E., Yatno, E., Hikmatullah, Nugroho, K., Sukarman, Subandiono, R. E., Hikmat, M., Tafakresnanto, C., Suratman, Hidayat, H., Sudrajat, D., Ponidi, Suryana, U., Supriatna, W., & Hartadi, A. (2019). Indonesian Peatland Map, Scale 1:50.000 (Peta Lahan Gambut Indonesia Skala 1:50.000). Bogor, Indonesian Agency for Agricultural Research and Development (Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian). http://bbsdlp.litbang.pertanian.go.id/ind/index.php/publikasi/info-peta-gambut

Sabir, M., Hakeem, K. R., Aziz, T., Zia‐ur‐Rehman, M., Rashid, I., & Ozturk, M. (2014). High Ni levels in soil can modify growth performance and mineral status of wheat cultivars. Clean–Soil, Air, Water, 42(9), 1263-1271.

Sangok, F. E., Sugiura, Y., Maie, N., Melling, L., Nakamura, T., Ikeya, K., & Watanabe, A. (2020). Variations in the rate of accumulation and chemical structure of soil organic matter in a coastal peatland in Sarawak, Malaysia. CATENA, 184, 104244. https://doi.org/10.1016/j.catena.2019.104244

Sheng, G., Huang, C., Chen, G., Sheng, J., Ren, X., Hu, B., Ma, J., Wang, X., Huang, Y., Alsaedi, A., & Hayat, T. (2018). Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation. Environmental Pollution, 233, 125-131. https://doi.org/10.1016/j.envpol.2017.10.047

Sipos, P., Choi, C., Németh, T., Szalai, Z., & Póka, T. (2014). Relationship between iron and trace metal fractionation in soils. Chemical Speciation & Bioavailability, 26(1), 21-30. https://doi.org/10.3184/095422914X13887685052506

Siqueira Freitas, D., Wurr Rodak, B., Rodrigues dos Reis, A., de Barros Reis, F., Soares de Carvalho, T., Schulze, J., Carbone Carneiro, M. A., & Guimarães Guilherme, L. R. (2018). Hidden Nickel Deficiency? Nickel Fertilization via Soil Improves Nitrogen Metabolism and Grain Yield in Soybean Genotypes [Original Research]. Frontiers in Plant Science, 9(614). https://doi.org/10.3389/fpls.2018.00614

Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D., & Prasad, T. N. V. K. V. (2013). Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology, 10(5), 1129-1140. https://doi.org/10.1007/s13762-013-0245-9

Sutejo, Y., Saggaff, A., Rahayu, W., & Hanafiah. (2017). Physical and chemical characteristics of fibrous peat. AIP Conference Proceedings,

Takada, M., Shimada, S., & Takahashi, H. (2016). Tropical Peat Formation. In M. Osaki & N. Tsuji (Eds.), Tropical Peatland Ecosystems (pp. 127-135). Springer. https://doi.org/10.1007/978-4-431-55681-7_8

Tupaz, C. A. J., Watanabe, Y., Sanematsu, K., Echigo, T., Arcilla, C., & Ferrer, C. (2020). Ni-Co Mineralization in the Intex Laterite Deposit, Mindoro, Philippines. Minerals, 10(7), 579. https://www.mdpi.com/2075-163X/10/7/579

Uruç Parlak, K. (2016). Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS - Wageningen Journal of Life Sciences, 76, 1-5. https://doi.org/10.1016/j.njas.2012.07.001

van der Ent, A., Echevarria, G., & Tibbett, M. (2016). Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 26(2), 67-82. https://doi.org/10.1007/s00049-016-0209-x

Wakhid, N., Hirano, T., Okimoto, Y., Nurzakiah, S., & Nursyamsi, D. (2017). Soil carbon dioxide emissions from a rubber plantation on tropical peat. Science of The Total Environment, 581-582, 857-865. https://doi.org/10.1016/j.scitotenv.2017.01.035

Wang, Y., Wang, S., Nan, Z., Ma, J., Zang, F., Chen, Y., Li, Y., & Zhang, Q. (2015). Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China. Environmental Science and Pollution Research, 22(24), 19756-19763. https://doi.org/10.1007/s11356-015-5153-8

Watanabe, T., Hasenaka, Y., Suwondo, Sabiham, S., & Funakawa, S. (2013). Mineral nutrient distributions in tropical peat soil of Riau, Indonesia with special reference to peat thickness. Pedologist, 57(2), 64-71. https://doi.org/10.18920/pedologist.57.2_64

Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bulletin of Environmental Contamination and Toxicology, 86(1), 1-17. https://doi.org/10.1007/s00128-010-0171-1

Yusuf, M., Fariduddin, Q., Varshney, P., & Ahmad, A. (2012). Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environmental Science and Pollution Research, 19(1), 8-18. https://doi.org/10.1007/s11356-011-0531-3

Zhang, X., Li, J., Wei, D., Li, B., & Ma, Y. (2015). Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel. PLoS One, 10(7), e0133920. https://doi.org/10.1371/journal.pone.0133920

Zhang, Y., Qie, J., Wang, X. F., Cui, K., Fu, T., Wang, J., & Qi, Y. (2020). Mineralogical Characteristics of the Nickel Laterite, Southeast Ophiolite Belt, Sulawesi Island, Indonesia. Mining, Metallurgy & Exploration, 37(1), 79-91. https://doi.org/10.1007/s42461-019-00147-y

Refbacks

  • There are currently no refbacks.