Mycorrhizae and a soil ameliorant on improving the characteristics of sandy soil

Aktavia Herawati, Jauhari Syamsiyah, Mujiyo Mujiyo, Mapan Rochmadtulloh, Afifah Afiana Susila, Muhammad Rizky Romadhon


Agricultural constraints on sandy soil are poor chemical characteristics and low biological activity resulting in the soil becoming less productive to be planted. One of the efforts to improve the quality of sandy soil are application of mycorrhizae and a soil ameliorant. The purpose of this study was to determine the effect of mycorrhizae and a soil ameliorant on soil chemical characteristics and soil biological activity. The experiment was arranged using a Complete Randomized Design that had two factors. The first factor (1) was mycorrhizae dose, without mycorrhizae (M0) and six spores of mycorrhizae/plant (M1), and the second factor (2) was types of soil ameliorant, without ameliorant (S0), cow dung (S1), rock phosphate (S2), biochar (S3), cow dung–rock phosphate (S4), cow dung–biochar (S5), and rock phosphate–biochar (S6). The results indicated that combination of six spores mycorrhizae/plant–cow dung 60 tons ha−1–biochar 25 tons ha−1 (M1S5) increased soil organic carbon (SOC) (235%), available P (675%), cation exchange capacity (CEC) (216%), total glomalin (101%), and easily extracted glomalin (69%), decreased exchangeable sodium percentage (66%), and increased absolutely for root infection and spore density than without mycorrhizae and a soil ameliorant (control). The lowest of SOC in non-mycorrhizae and rock phosphate, available P, CEC, root infection, spore density were found on the control, but the lowest of total glomalin and easily extracted glomalin were found on non-mycorrhizae–rock phosphate. The application of mycorrhizae, cow dung, and biochar improved the sandy soil characteristics.


Cow dung; Biochar; Rock phosphate; SOC; Glomalin

Full Text:



Alvernia, P., Minardi, S., & Suntoro. (2017). Zeolite and Organic Fertilizer Application to The Improvement of Available P and Soybean (Glycine max L) Seed Yield in Alfisols. Sains Tanah - Journal of Soil Science and Agroclimatology, 14(2), 83-89.

Ameloot, N., Graber, E. R., Verheijen, F. G. A., & De Neve, S. (2013). Interactions between biochar stability and soil organisms: review and research needs. European Journal of Soil Science, 64(4), 379-390.

Amoakwah, E., Arthur, E., Frimpong, K. A., Parikh, S. J., & Islam, R. (2020). Soil organic carbon storage and quality are impacted by corn cob biochar application on a tropical sandy loam. Journal of Soils and Sediments, 20(4), 1960-1969.

Barin, M., Aliasgharzad, N., Olsson, P. A., Rasouli-Sadaghiani, M., & Moghddam, M. (2013). Abundance of arbuscular mycorrhizal fungi in relation to soil salinity around Lake Urmia in northern Iran analyzed by use of lipid biomarkers and microscopy. Pedobiologia, 56(4), 225-232.

Birhane, E., Gebretsadik, K. F., Taye, G., Aynekulu, E., Rannestad, M. M., & Norgrove, L. (2020). Effects of Forest Composition and Disturbance on Arbuscular Mycorrhizae Spore Density, Arbuscular Mycorrhizae Root Colonization and Soil Carbon Stocks in a Dry Afromontane Forest in Northern Ethiopia. Diversity, 12(4), 1-16.

Bruun, E. W., Petersen, C., Strobel, B. W., & Hauggaard-Nielsen, H. (2012). Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar. Soil Science Society of America Journal, 76(4), 1142-1148.

Cai, A., Xu, M., Wang, B., Zhang, W., Liang, G., Hou, E., & Luo, Y. (2019). Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189, 168-175.

de Amaral Leite, A., de Souza Cardoso, A. A., de Almeida Leite, R., de Oliveira-Longatti, S. M., Filho, J. F. L., de Souza Moreira, F. M., & Melo, L. C. A. (2020). Selected bacterial strains enhance phosphorus availability from biochar-based rock phosphate fertilizer. Annals of Microbiology, 70(1), 1-13.

Głąb, T., Żabiński, A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa-Hersztek, M., Tabor, S., & Stanek-Tarkowska, J. (2020). Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties. Soil and Tillage Research, 197, 1-10.

Haliru, M., Dikko, A., Audu, M., & Aliyu, I. (2018). Effect of cow dung on soil properties and performance of sweet potato (Ipomoea batatas L.) in Sudan Savanna, Nigeria. International Journal of Plant & Soil Science, 212-216.

Han, S. H., An, J. Y., Hwang, J., Kim, S. B., & Park, B. B. (2016). The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. Forest Science and Technology, 12(3), 137-143.

Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208, 1-22.

Jing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., & Huang, Y. (2020). Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Scientific Reports, 10(1), 1-12.

Kasno, A., & Sutriadi, M. T. (2012). Indonesian Rock-Phosphate Effectivity for Maize Crop on Ultisols Soils. AGRIVITA, Journal of Agricultural Science, 34(1), 14-21.

Kocsis, T., Kotroczó, Z., Kardos, L., & Biró, B. (2020). Optimization of increasing biochar doses with soil–plant–microbial functioning and nutrient uptake of maize. Environmental Technology & Innovation, 20, 101191.

Li, Y., Wang, S., Lu, M., Zhang, Z., Chen, M., Li, S., & Cao, R. (2019). Rhizosphere interactions between earthworms and arbuscular mycorrhizal fungi increase nutrient availability and plant growth in the desertification soils. Soil and Tillage Research, 186, 146-151.

Liu, M., Zhao, Z., Chen, L., Wang, L., Ji, L., & Xiao, Y. (2020). Influences of arbuscular mycorrhizae, phosphorus fertiliser and biochar on alfalfa growth, nutrient status and cadmium uptake. Ecotoxicology and Environmental Safety, 196, 1-8.

Maftu'ah, E., & Nursyamsi, D. (2019). Effect of Biochar on Peat Soil Fertility and NPK Uptake by Corn [biochar; corn; NPK uptake; peatland; soil fertility]. 2019, 41(1), 64-73.

Minardi, S., Haniati, I. L., & Nastiti, A. H. L. (2020). Adding manure and zeolite to improve soil chemical properties and increase soybean yield [Cow manure; Seed weight; Soybeans; Organic fertilizers; Zeolite]. 2020, 17(1), 1-6.

Prasetyo, R. (2014). Pemanfaatan Berbagai Sumber Pupuk Kandang sebagai Sumber N dalam Budidaya Cabai Merah (Capsicum annum L.) di Tanah Berpasir. Planta Tropika: Journal of Agro Science, 2(2), 125-132.

Putra, S. S., Putra, E. T. S., & Widada, J. (2020). The Effects of Types of Manure and Mycorrhizal Applications on Sandy Soils on the Growth and Yield of Curly Red Chili (Capsicum annum L.). Caraka Tani: Journal of Sustainable Agriculture, 35(2), 258-267.

Rahayu, Saidi, D., & Herlambang, S. (2019). Pengaruh biochar tempurung kelapa dan pupuk kandang pada tanah pasir pantai. Jurnal Tanah Dan Air, 16(2), 10.

Rahayu, Syamsiyah, J., Cahyani, V. R., & Fauziah, S. K. (2019). The Effects of Biochar and Compost on Different Cultivars of Shallots (Allium ascalonicum L.) Growth and Nutrient Uptake in Sandy Soil Under Saline Water. Sains Tanah - Journal of Soil Science and Agroclimatology, 16(2), 216-228.

Raklami, A., Bechtaoui, N., Tahiri, A.-i., Anli, M., Meddich, A., & Oufdou, K. (2019). Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility [Original Research]. Frontiers in Microbiology, 10(1106), 1-11.

Ramos, F. T., Dores, E. F. d. C., Weber, O. L. d. S., Beber, D. C., Campelo Jr, J. H., & Maia, J. C. d. S. (2018). Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. Journal of the Science of Food and Agriculture, 98(9), 3595-3602.

Richardson, A. E., & Simpson, R. J. (2011). Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiology, 156(3), 989-996.

Singh, P. K., Singh, M., & Tripathi, B. N. (2013). Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250(3), 663-669.

Sithole, N. J., & Magwaza, L. S. (2019). Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. Soil and Tillage Research, 194, 1-9.

Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. I. (2019). Is the content and potential preservation of soil organic carbon reflected by cation exchange capacity? A case study in Swiss forest soils. Biogeosciences Discuss., 2019, 1-32.

Sosa-Hernández, M. A., Leifheit, E. F., Ingraffia, R., & Rillig, M. C. (2019). Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right Under Our Feet? [Review]. Frontiers in Microbiology, 10(4), 1-12.

Syamsiyah, J., Herawati, A., & Binafsihi, W. (2020). Study of levels water salinity on the growth of varieties of shallots (Allium ascalonicum L) in Alfisols. IOP Conference Series: Earth and Environmental Science, 423(1), 1-6.

Syamsiyah, J., Sunarminto, B. H., Hanudin, E., & Widada, J. (2014). Pengaruh Inokulasi Jamur Mikoriza Arbuskula terhadap Glomalin, Pertumbuhan dan Hasil Padi [Glomalin; Mycorrhizae; nutrient uptake; rice yield]. Sains Tanah-Journal of Soil Science and Agroclimatoloy, 11(1).

Syibli, M. A., Muhibuddin, A., & Djauhari, S. (2013). Arbuscular mycorrhiza fungi as an indicator of soil fertility. AGRIVITA, Journal of Agricultural Science, 35(1), 10.

Vlček, V., & Pohanka, M. (2020). Glomalin–an interesting protein part of the soil organic matter. Soil and Water Research, 15(2), 67-74.

Wahid, F., Sharif, M., Fahad, S., Adnan, M., Khan, I. A., Aksoy, E., Ali, A., Sultan, T., Alam, M., Saeed, M., Ullah, H., Basir, A., Noor, M., & Khan, N. A. (2019). Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. Journal of Plant Nutrition, 42(15), 1760-1769.

Wu, Q.-S., Cao, M.-Q., Zou, Y.-N., & He, X.-h. (2014). Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports, 4(1), 5823.

Wu, Q.-S., Li, Y., Zou, Y.-N., & He, X.-H. (2015). Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza, 25(2), 121-130.

Xiao, Y., Liu, M., Chen, L., Ji, L., Zhao, Z., Wang, L., Wei, L., & Zhang, Y. (2020). Growth and elemental uptake of Trifolium repens in response to biochar addition, arbuscular mycorrhizal fungi and phosphorus fertilizer applications in low-Cd-polluted soils. Environmental Pollution, 260, 113761.

Xie, H., Li, J., Zhang, B., Wang, L., Wang, J., He, H., & Zhang, X. (2015). Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates. Scientific Reports, 5(1), 1-9.

Yost, J. L., & Hartemink, A. E. (2019). Chapter Four - Soil organic carbon in sandy soils: A review. In D. L. Sparks (Ed.), Advances in Agronomy (1st ed., Vol. 158, pp. 217-310). Academic Press.

Yun, P., Xu, L., Wang, S.-S., Shabala, L., Shabala, S., & Zhang, W.-Y. (2018). Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regulation, 86(2), 323-331.

Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., Chen, J., Dyck, M., Wang, X., Zhang, J., & Zhang, A. (2017). Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environmental Science and Pollution Research, 24(11), 10108-10120.

Zulkoni, A., Rahyuni, D., & Nasirudin, N. (2020). Pengaruh Bahan Organik Dan Jamur Mikoriza Arbuskula Terhadap Harkat Tanah Pasir Pantai Selatan Yogyakarta Yang Menjadi Medium Pertumbuhan Jagung (Zea Mays). Media Ilmiah Teknik Lingkungan (MITL), 5(1), 8-15.


  • There are currently no refbacks.