Soil properties and shallot yield responses to different salinity levels

Jauhari Syamsiah, Rahayu Rahayu, Wily Binafsihi

Abstract

Successful management of saline water could have significant potential for agricultural development in many areas, particularly in freshwater-scarce regions. To date, the effect of salinity on shallot (Allium Cepa L.) yield and growth parameters has not been studied in detail specifically for local varieties cultivated in Inceptisols. Therefore, the present study was designed to evaluate the effects of different levels of irrigation-water salinity (0, 1, 2, and 3 dSm-1) on soil chemical properties, the growth, and yield of local shallot varieties. The experiment was conducted in pots using a randomized plot design with two factors and three replications. The results showed that increases in salinity level affected increases soil pH, exchangeable Na percentages, and plant height growth. Nevertheless, bulb number and weight, soil exchangeable Ca and Mg, soil organic carbon, and sodium adsorption ratio (SAR) was not significantly affected. The findings of the present study suggest that the local varieties—Brebes and Purbalingga—with irrigated salinity levels up to 3 dSm-1can be tolerated for shallot cultivation in Inceptisols.

Keywords

Irrigation water salinity; Local varieties; Soil chemical properties; Yield of shallot

Full Text:

PDF

References

Abd-Elwahed, M. S. (2019). Effect of long-term wastewater irrigation on the quality of alluvial soil for agricultural sustainability. Annals of Agricultural Sciences, 64(2), 151–160. https://doi.org/10.1016/j.aoas.2019.10.003

Adiku, S. G. K., Renger, M., Wessolek, G., Facklam, M., & Hecht-Bucholtz, C. (2001). Simulation of the dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agricultural Water Management, 47(1), 55–68. https://doi.org/10.1016/S0378-3774(00)00094-9

Akhwan, I. A. S., Sulistyaningsih, E., & Widada, J. (2012). Peran JMA dan bakteri penghasil ACC deaminase terhadap pertumbuhan dan hasil bawang merah pada cekaman salinitas. Vegetalika, 1(2), 53–70. https://doi.org/10.22146/veg.1528

Angassa, A., Sheleme, B., Oba, G., Treydte, A. C., Linstädter, A., & Sauerborn, J. (2012). Savanna land use and its effect on soil characteristics in southern Ethiopia. Journal of Arid Environments, 81, 67–76. https://doi.org/10.1016/j.jaridenv.2012.01.006

Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84–93. https://doi.org/10.1016/j.biotechadv.2008.09.003

BPS. (2019). Statistik hortikultura provinsi Jawa Tengah. Retrieved December 21, 2019, from www. distanbun.jatengprov.go.id

Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils (13th ed.). New Jersey, USA: Prentice- Hall Inc.

Bremner, J. M. (1965). Total nitrogen. In C. A. Black (Ed.), Methods of soil analysis. Part 2: Chemical and microbial properties (Number 9 i, pp. 1049–1178). Madison, USA: American Society of Agronomy Inc.

Carson, P. L. (1980). Recommended potassium test. In W. C. Dahnke (Ed.), Recommended Chemical Soil Test Procedures for the North Central Region, Bulletin 499 (pp. 17–18). Fargo, North Dakota, USA: North Dakota Agricultural Experiment Station.

David, D. J. (1960). The determination of exchangeable sodium, potassium, calcium, and magnesium in soils by atomic-absorption spectrophotometry. Analyst, 85, 495–503. https://doi.org/10.1039/AN9608500495

DeMicco, V., Scala, M., & Aronne, G. (2006). Effects of simulated microgravity on male gametophyte of Prunus, Pyrus, and Brassica species. Protoplasma, 228, 121–126. https://doi.org/10.1007/s00709-006-0161-7

Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1, 51–58. https://doi.org/10.1038/s41893-017-0006-8

Gill, R. A., Zang, L., Ali, B., Farooq, M. A., Cui, P., Yang, S., … Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere. Chemosphere, 120, 154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029

Istiqomah, N., Barunawati, N., Aini, N., & Widaryanto, E. (2019). True shallot seed production of lowland shallot under the application of seaweed extract and N fertilizer. Russian Journal of Agricultural and Socio-Economic Sciences, 6(90), 325–338. https://doi.org/10.18551/rjoas.2019-06.41

Jalali, V., Kapourchal, S. A., & Homaee, M. (2017). Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions. Agricultural Water Management, 180, 13–21. https://doi.org/10.1016/j.agwat.2016.10.015

Kadayifci, A., Tuylu, G. İ., Ucar, Y., & Cakmak, B. (2005). Crop water use of onion (Allium cepa L.) in Turkey. Agricultural Water Management, 72(1), 59–68. https://doi.org/10.1016/j.agwat.2004.08.002

Khaleghi, E., Karamnezhad, F., & Moallemi, N. (2019). Study of pollen morphology and salinity effect on the pollen grains of four olive (Olea europaea) cultivars. South African Journal of Botany, 127, 51–57. https://doi.org/10.1016/j.sajb.2019.08.031

Kiremit, M. S., & Arslan, H. (2016). Effects of irrigation water salinity on drainage water salinity, evapotranspiration, and other leek (Allium porrum L.) plant parameters. Scientia Horticulturae, 201, 211–217. https://doi.org/10.1016/j.scienta.2016.02.001

Koval, V. S. (2004). Male and female gametophyte selection of barley for salt tolerance. Hereditas, 132(1), 1–5. https://doi.org/10.1111/j.1601-5223.2000.00001.x

Li, J., Gao, Y., Zhang, X., Tian, P., Li, J., & Tian, Y. (2019). Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield, and fruit quality. Agricultural Water Management, 213, 521–533. https://doi.org/10.1016/j.agwat.2018.11.003

Mahrous, F. N., Mikkelsen, D. S., & Hafez, A. A. (1983). Effect of soil salinity on the electro-chemical and chemical kinetics of some plant nutrients in submerged soils. Plant and Soil, 75, 455–172. https://doi.org/10.1007/BF02369980

Mangal, J. L., Lal, S., & Hooda, P. S. (1989). Salt tolerance of the onion seed crop. Journal of Horticultural Science, 64(4), 475–477. https://doi.org/10.1080/14620316.1989.11515980

Moyin-Jesu, E. I. (2007). Use of plant residues for improving soil fertility, pod nutrients, root growth, and pod weight of okra (Abelmoschus esculentum L). Bioresource Technology, 98(11), 2057–2064. https://doi.org/10.1016/j.biortech.2006.03.007

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

Murtaza, G., Ghafoor, A., & Qadir, M. (2006). Irrigation and soil management strategies for using saline-sodic water in a cotton–wheat rotation. Agricultural Water Management, 81(1–2), 98–114. https://doi.org/10.1016/j.agwat.2005.03.003

Rabie, G. H., Aboul-Nasr, M. B., & Al-Humiany, A. (2005). Increased Salinity Tolerance of Cowpea Plants by Dual Inoculation of an Arbuscular Mycorrhizal Fungus Glomus clarum and a Nitrogen-fixer Azospirillum brasilense. Microbiology, 33(1), 51–60. https://doi.org/10.4489/MYCO.2005.33.1.051

Ravikumar, R. L., Patil, B. S., & Salimath, P. M. (2003). Drought tolerance in sorghum by pollen selection using osmotic stress. Euphytica, 133, 371–376. https://doi.org/10.1023/A:1025702709095

Sumarni, N., Rosliani, R., & Suwandi. (2012). Optimasi jarak tanam dan dosis pupuk untuk produksi bawang merah dari benih umbi mini di dataran tinggi. Jurnal Hortikultura (ID), 22(2), 147–154. https://doi.org/10.21082/jhort.v22n2.2012.p148-155

Tetsopgang, S., & Fonyuy, F. (2019). Enhancing growth quality and yield of cabbage (Brassica oleracea) while increasing soil pH, chemicals, and organic carbon with the application of fines from volcanic pyroclastic materials on a tropical soil in Wum, Northwest Cameroon, Africa. Scientific African, 6, e00199. https://doi.org/10.1016/j.sciaf.2019.e00199

Turhan, M. S., Kuscu, H., Özmen, N., & Demir, A. O. (2014). The effect of different salinity levels on the yield and some quality parameters of garlic (Allium sativum L.). Journal of Agricultural Sciences, 20, 280–287.

Wu, X., Zheng, Y., Wu, B., Tian, Y., Han, F., & Zheng, C. (2016). Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach. Agricultural Water Management, 163, 380–392. https://doi.org/10.1016/j.agwat.2015.08.022

Yuliani, F. (2017). Respon Morfologi dan Fisiologi Tanaman Bawang Merah (Allium cepa L.) Terhadap Cekaman Salinitas. Institut Pertanian Bogor, Bogor, Indonesia. Retrieved from repository.ipb.ac.id/jspui/bitstream/123456789/87769/1/2017fyu.pdf

Zaki, M. K., Komariah, Rahmat, A., & Pujiasmanto, B. (2018). Organic amendment and fertilizer effect on soil chemical properties and yield of Maize (Zea mays L.) in rainfed condition. Walailak Journal of Science and Technology, 17(1), 11–17.

Refbacks

  • There are currently no refbacks.