Agriculture versus climate change – A narrow staple-based rural livelihood of Papua New Guinea is a threat to survival under climate change

Patrick S. Michael

Abstract

This paper presents a synthesis related to the assessment of climate change and its impacts on productivity of staple crops in Papua New Guinea (PNG), paying close attention to the change in population in the next 80 years. As much as the changes in the climatic and environmental factors will affect agriculture, evidence available in the literature show increase in global and local population will put additional pressure on agriculture by competing with available land and other resources that support agricultural productivity. The developing and underdeveloped countries are considered to be largely vulnerable as more than 85% of the people depend on subsistence agriculture for rural livelihood. This synthesis showed more than 60–85% of the rural people in PNG depend on sweet potato, banana, Colocasia taro, and greater yam. Projection of the population showed there will be 22–31 million people by 2100 and will depend on narrow staple-based subsistence agriculture. The population projected means the density will be 42 people per km2, putting more pressure on limited land available. When that happens, PNG will not be prepared to mitigate, be resilient and adapt because of poor infrastructure, no development plans and lack of post-harvest technologies for loss management of the staples, most of which are root and tuber crops.

Keywords

Climate change; Population increase; Rural development; Staple-based agriculture

Full Text:

PDF

References

Ahanger, R. A., Bhat, H. A., Bhat, T. A., Ganie, S. A., Lone, A. A., Wani, I. A., … Bhat, T. A. (2013). Impact of climate change on plant diseases. International Journal of Modern Plant and Animal Sciences, 1(13), 105–115.

Alagidede, P., Adu, G., & Frimpong, P. B. (2016). The effect of climate change on economic growth: evidence from Sub-Saharan Africa. Environmental Economics and Policy Studies, 18, 417–436. https://doi.org/10.1007/s10018-015-0116-3

Allen, B. J., Bourke, R. M., & Hanson, L. (2001). Dimensions of Papua New Guinea village agriculture. In R. M. Bourke, M. G. Allen, & J. G. Salisbury (Eds.), Food Security for Papua New Guinea. Proceedings of the Papua New Guinea Food and Nutrition 2000 Conference. ACIAR Proceedings No 99 (pp. 529–553). Canberra, Australia: Australian Centre for International Agricultural Research.

Alves, A. A. C. (2002). Cassava botany and physiology. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava: Biology, production and utilization (pp. 67–89). Oxon, UK: CABI Publishing.

Balagopalan, C. (2002). Cassava utilization in food, feed and Industry. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava: Biology, production and utilization (pp. 301–318). Oxon, UK: CABI Publishing.

Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323(5911), 240–244. https://doi.org/10.1126/science.1164363

Bellamy, J. A. (1995). Rainfall erosivity in Papua New Guinea. PNGRIS Publication no. 9. Canberra, Australia: Australian Agency for International Development.

Bellamy, J. A., & McAlpine, J. R. (1995). Papua New Guinea inventory of natural resources, population distribution and land use handbook. PNGRIS publication no. 6. Canberra, Australia: Australian Agency for International Development.

Bourke, R. M., & Allen, R. (2009). Food and agriculture in Papua New Guinea. In R. M. Bourke & T. Harwood (Eds.), Village food production systems (pp. 194–269). Canberra, Australia: ANU Press.

Bourke, R. M., & Vlassak, V. (2004). Estimates of food crop production in Papua New Guinea. Canberra, Australia: Land Management Group, Research School of Asia and the Pacific, The Australian National University.

Brown, A. L., Gleadow, R., & Miller, R. E. (2016). Interactive effects of temperature and drought on cassava growth and toxicity: implications for food security? Global Change Biology, 22(10), 3461–3473. https://doi.org/10.1111/gcb.13380

CGIAR (Consultative Group for International Agriculture Research). (2015). Bananas and climate change: what is going to happen to one of the world’s favorite fruits? Retrieved March 3, 2020, from https://www.bioversityinternational.org/news/detail/bananas-and-climate-change-what-is-going-to-happen-to-one-of-the-worlds-favourite-fruits/

Challinor, A., Wheeler, T., Garforth, C., Craufurd, P., & Kassam, A. (2007). Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change, 83, 381–399. https://doi.org/10.1007/s10584-007-9249-0

Costanza, R., D’Arge, R., de Groot, R., Farber, S., Grasso, M., & et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. https://doi.org/10.1038/387253a0

Dapaah, S. K. (1994). Contributions of root and tuber crops to socioeconomic changes in the development world: The case of Africa, with special emphasis on Ghana. Acta Horticulturae, 380, 44–49. https://doi.org/10.17660/ActaHortic.1994.380.3

Dar, J. A., Subashree, K., Sundarapandian, S., Saikia, P., Kumar, A., Khare, P. K., Dayanandan, S., & Khan, M. L. (2019). Invasive species and their impact on tropical forests of Central India: A review. In S. Garkoti, S. Van-Bloem, P. Fulé, & R. Semwal (Eds.), Tropical ecosystems: Structure, functions and challenges in the face of global change (pp. 69–109). Singapore: Springer.

Deo, P. C., Tyagi, A. P., Taylor, M., Becker, D. K., & Harding, R. M. (2009). Improving taro (Colocasia esculenta var. esculenta) production using biotechnological approaches. The South Pacific Journal of Natural and Applied Sciences, 27(1), 6–13. https://doi.org/10.1071/SP09002

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impact of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6668–6672. https://doi.org/10.1073/pnas.0709472105

Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919. https://doi.org/10.1126/science.aat3466

El-Sharkawy, M. A. (2003). Cassava biology and physiology. Plant Molecular Biology, 53, 621–641. https://doi.org/10.1023/B:PLAN.0000019109.01740.c6

Fankhauser, S., & Tol, R. S. J. (2005). On climate change and economic growth. Resource and Energy Economic, 27(1), 1–17. https://doi.org/10.1016/j.reseneeco.2004.03.003

FAOSTAT. (2019). Food and Agriculture Data of Papua New Guinea. Retrieved March 2, 2020, from http://www.fao.org/countryprofiles/index/en/?iso3=PNG

Gedir, J. V., Chain, J. W., Trey, H. G., & Turnbull, T. T. (2015). Effects of climate change on long‐term population growth of pronghorn in an arid environment. Ecosphere, 6(10), 1–20. https://doi.org/10.1890/ES15-00266.1

Gioria, M., & Osborne, B. A. (2014). Resource competition in plant invasions: emerging patterns and research needs. Frontiers in Plant Science, 5(501). https://doi.org/10.3389/fpls.2014.00501

Goodman, B. A., & Newton, A. C. (2005). Effects of drought stress and its sudden relief on free radical processes in barley. Journal of the Science of Food and Agriculture, 85(1), 47–53. https://doi.org/10.1002/jsfa.1938

Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B, 365(1554), 2973–2989. https://doi.org/10.1098/rstb.2010.0158

Hancock, R. D., Morris, W. L., Ducreux, L. J. M., Morris, J. A., Usman, M., Verrall, S. R., … Taylor, M. A. (2013). Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell and Environment, 37(2), 439-50. https://doi.org/10.1111/pce.12168

Harvey, C. A., Saborio-Rodríguez, M., Martinez-Rodríguez, M. R., Viguera, B., Chain-Guadarrama, A., Vignola, R., & Alpizar, F. (2018). Climate change impacts and adaptation among smallholder farmers in Central America. Agriculture & Food Security, 7(57). https://doi.org/10.1186/s40066-018-0209-x

Hussain, M. S., & Javadi, A. A. (2016). Assessing impacts of sea level rise on seawater intrusion in a coastal aquifer with sloped shoreline boundary. Journal of Hydro-Environment Research, 11, 29–41. https://doi.org/10.1016/j.jher.2016.01.003

IPCC. (1990). Climate change: The IPCC scientific assessment. In J. T. Houghton, G. J. Jenkins, & J. J. Ephraums (Eds.), World meteorological organization and United Nations environmental program (p. 365p.). Cambridge, UK: Cambridge University Press.

IPCC. (2007). IPCC fourth assessment report 2007. Working group II report impacts, adaptation and vulnerability. Retrieved March 5, 2020, from http://www.ipcc-wg2.org

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (S. T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley, Eds.). Cambridge, UK and New York, USA: Cambridge University Press.

Irlich, U., Terblanche, J. S., Blackburn, T. M., & Chown, S. L. (2009). Insect rate-temperature relationships: Environmental variation and the metabolic theory of ecology. The American Naturalist, 174(6), 819–835. https://doi.org/10.2307/27735897

Kissoudis, C., van de Wiel, C., Visser, R. G. F., & van der Linden, G. (2014). Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Frontiers in Plant Science, 5(207), 1–20. https://doi.org/10.3389/fpls.2014.00207

Knapp, A. K., & Medina, E. (1999). Success of C4 photosynthesis in the field: lessons from communities dominated by C4 plants. In R. F. Sage & R. K. Monson (Eds.), Plant Biology (pp. 251–283). London, UK: Academic Press.

Knoema. (2018). Papua New Guinea CO2 emissions, 1970-2018. Retrieved February 3, 2020, from https://knoema.com/atlas/Papua-New-Guinea/CO2-emissions-per-capita

Kostrowicki, J. (1983). Land use systems and their impact on environment. An attempt at a classification. Advances in Space Research, 2(8), 209–215. https://doi.org/10.1016/0273-1177(82)90242-3

Kubo, M., & Purevdorj, M. (2004). The future of rice production and consumption. Journal of Food Distribution Research, 35(1), 1–15. https://doi.org/10.22004/ag.econ.27145

Kulmatiski, A. (2006). Exotic plants establish persistent communities. Plant Ecology, 187, 261–275. https://doi.org/10.1007/s11258-006-9140-5

Kulp, S. A., & Strauss, B. H. (2019). New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communication, 10(4844).

Kumar, K. K., Kumar, K. R., Ashrit, R. G., Deshpande, N. R., & Hansen, J. W. (2004). Climate impacts on Indian agriculture. International Journal of Climatology, 24, 1375–1393. https://doi.org/10.1002/joc.1081

Ladanyi, M., & Horvath, L. (2010). A review of the potential climate change impact on insect populations – general and agricultural aspects. Applied Ecology and Environmental Research, 8(2), 143–152.

Lu, C., & Werner, A. D. (2013). Timescales of seawater intrusion and retreat. Advances in Water Resources, 59, 39–51. https://doi.org/10.1016/j.advwatres.2013.05.005

Mcalpine, J., Keig, G., & Short, K. (1975). Climatic tables for Papua New Guinea. Technical Paper No. 37. Canberra, Australia.

Mendelsohn, R. (2009). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research, 1(1), 5–19. https://doi.org/10.1080/19390450802495882

Michael, P. S. (2019). Current evidence and future projections: a comparative analysis of the impacts of climate change on critical climate-sensitive areas of Papua New Guinea. SAINS TANAH - Journal of Soil Science and Agroclimatology, 16(2), 229–253. https://doi.org/10.20961/stjssa.v16i2.35712

Michael, P. S., Fitzpatrick, W. R., & Reid, J. R. (2017). Effects of live wetland plant macrophytes on acidification, redox potential and sulfate content in acid sulphate soils. Soil Use and Management, 33(3), 471–481. https://doi.org/10.1111/sum.12362

Michael, P. S., & Reid, J. R. (2018). The combined effects of complex organic matter and plants on the chemistry of acid sulfate soils under aerobic and anaerobic soil conditions. Journal of Soil Science and Plant Nutrition, 18, 542–555.

Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Comprehensive Reviews in Food Science and Food Safety, 8(3), 181–194. https://doi.org/10.1111/j.1541-4337.2009.00077.x

Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., & et al. (2014). Increasing CO2 threatens human nutrition. Nature, 510, pages139–142. https://doi.org/10.1038/nature13179

Nassar, N. M. A., & Ortiz, R. (2007). Cassava improvement: Challenges and impacts. The Journal of Agriculture Science, 145(2), 163–171. https://doi.org/10.1017/S0021859606006575

Nix, H. A. (1985). Climate Impact Assessment. In R. W. Kates, J. H. Ausubel, & M. Berberian (Eds.), SCOPE 27. New York, USA: Wiley.

Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4), 239–262. https://doi.org/10.1016/S1161-0301(02)00004-7

Onwueme, I. C., & Haverkort, A. J. (1991). Modelling growth and productivity of yams (Dioscorea spp.): prospects and problems. Agricltural System, 31(3), 351–367. https://doi.org/10.1016/0308-521X(91)90015-3

Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2014). Banana by-products: an under-utilized renewable food biomass with feat potential. Journal of Food Science and Technology, 51(12), 3527–3545. https://doi.org/10.1007/s13197-012-0861-2

Parry, M. L. (1998). The impact of climate change on European agriculture. In T. Lewis (Ed.), The Bawden Memorial Lectures 1973-1998 (Silver Jub, pp. 325–338). Farnham, UK: British Crop Protection Council.

Pe, A., Netondo, G., Kataka, J. A., & Palapala, V. A. (2015). A critical review of the role of taro Colocasia esculenta L. (Schott) to food security: A comparative analysis of Kenya and Pacific Island taro germplasm. Scientia Agriculturae, 9(2), 101–108.

Peel, C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

PNG NSO. (2011). National population and housing census 2011. Retrieved March 19, 2020, from https://www.nso.gov.pg/

Pretty, J. (1999). Can sustainable agriculture feed Africa? New evidence on progress, processes and impacts. Environment, Development and Sustainability, 1, 253–274.

Rashmi, D. R., Anitha, B., Anjum, S. R., Raghu, N., Gopenath, T. S., Chandrashekrappa, G. K., & Kanthesh, M. B. (2018). An overview of taro (Colocasia esculenta): A review. Academia Journal of Agricultural Research, 6(10), 346–353. https://doi.org/10.15413/ajar.2018.0144

Regina, H. Y. F., Kikuno, H., & Maruyama, M. (2011). Research on yam production, marketing and consumption of Nupe farmers of Niger State, central Nigeria. African Journal of Agricultural Research, 6(23), 5301–5313. https://doi.org/10.5897/AJAR11.586

Runion, G. B. (2003). Climate change and plant pathosystems: Future disease prevention starts here. New Phytologist, 159(3), 531–533. https://doi.org/10.1046/j.1469-8137.2003.00868.x

Selassie, Y. G., Anemut, F., & Addisu, S. (2015). The effects of land use types, management practices and slope classes on selected soil physico-chemical properties in Zikre watershed, North-Western Ethiopia. Environmental Systems Research, 4(3). https://doi.org/10.1186/s40068-015-0027-0

Sherif, M., & Singh, V. P. (1999). Effect of climate change on sea water intrusion in coastal aquifers. Hydrological Processes, 13(8), 1277–1287.

Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4, 178– 202.

Srivastava, A. K., Gaiser, T., Paeth, H., & Ewert, F. (2012). The impact of climate change on yam (Dioscorea alata) yield in the savanna zone of West Africa. Agriculture, Ecosystems and Environment, 153, 57–64.

Strugnell, L. (2018). The importance of wheat in the global food supply to a growing population. Retrieved March 2, 2020, from https://www.cimmyt.org/publications/new-publications-the-importance-of-wheat-in-the-global-food-supply-to-a-growing-population/

Thompson, L. M. (1975). Weather variability, climate change and food production. Science, 188, 534–541.

Townsend, P. K. (1974). Sago production in a New Guinea economy. Human Ecology, 2(3), 217–236.

Trnka, M., Feng, S., Semenov, M. A., Olesen, J. E., Kersebaum, K. C., Rötter, R. P., … Büntgen, U. (2019). Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Science Advances, 5(9), eaau2406. https://doi.org/10.1126/sciadv.aau2406

United Nations. (2019). World population prospects 2019. Retrieved February 1, 2020, from https://population.un.org/wpp/

Varma, V., & Bebber, D. P. (2019). Climate change impacts on banana yields around the world. Nature Climate Change Volume, 9, 752–757.

Walters, D. R., & Bingham, I. J. (2007). Influence of nutrients on disease development caused by fungal pathogens: implications for plant disease control. Annals of Applied Biology, 151(3), 307–324. https://doi.org/10.1111/j.1744-7348.2007.00176.x

Yebo, B. (2015). Integrated soil fertility management for better crop production in Ethiopia. International Journal of Soil Science, 10(1), 1–16. https://doi.org/10.3923/ijss.2015.1.16

Refbacks

  • There are currently no refbacks.