Carbon dioxide emission and peat hydrophobicity in tidal peatlands

Siti Nurzakiah, Nur Wakhid, Anna Hairani

Abstract

Peatland describes the typology of tidal and freshwater swamplands. Peatlands are affected by tidal activity; the water level fluctuation causes the peat to dry out and then get wet, which affects the soil’s water content and carbon emissions. Additionally, mineral enrichment from river overflows affects soil fertility and peat stability. Peat stability is importantly related to the peatland management for agriculture. Functional groups in the peat, such as carboxyl and hydroxyl, are volatile and easily transform, decomposing from CHO bonds into CO2 under aerobic conditions. The characteristics of functional groups can be changed from polar to non-polar at the organic colloid surface, leading to hydrophobicity. This study evaluated carbon dioxide emissions and peat hydrophobicity. The research was conducted by survey and field sampling on two differently managed plots of peatlands: a rubber-and-pineapple intercrop plot and a traditionally-managed rubber plot. Parameters measured were CO2 flux, groundwater levels, water content, and peat hydrophobicity. Peat hydrophobicity was assessed by analyzing certain functional groups using a Fourier-Transform Infrared (FTIR) spectrophotometer. The results showed that CO2 emissions were 21.78 ± 5.44 (mg ha-1yr-1) for the rubber-and-pineapple intercrop and 19.15 ± 5.18 (mg ha-1 yr-1) for the traditionally-managed rubber plot. Peat hydrophobicity for both plots decreased with increasing soil depth, indicating that peat on the surface layer (0–50 cm) is more vulnerable to drought and fires, especially if there is no water management.

Keywords

Functional groups of peat; Land use; Soil water content

Full Text:

PDF

References

Agus, F., Marwanto, S., Dariah, A., Husen, E., Wigena, I. G. P., Maswar, & Setyanto, P. (2013, November). Peat CO2 emissions from several land use types in Indonesia. MPOB International Palm Oil Congress (PIPOC).

Andersen, R., Chapman, S. J., & Artz, R. R. E. (2013). Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry, 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003

Artz, R. R. E., Chapman, S. J., Robertson, A. H. J., Potts, J. M., Laggoun-De’farge, F., Gogo, S., Comont, L., Disnar, J. R., & Francez, A. J. (2008). FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biology and Biochemistry, 40(2), 515–527. https://doi.org/10.1016/j.soilbio.2007.09.019.

Azri. (1999). Sifat kering tidak balik tanah gambut dari Jambi dan Kalimantan Tengah: analisis berdasarkan kadar air kritis, kemasaman total, gugus fungsional COOH dan OH-fenolat. IPB University.

Blessing, C. H., Barthel, M., Gentsch, L., & Buchmann, N. (2016). Strong coupling of shoot assimilation and soil respiration during drought and recovery periods in beech as indicated by natural abundance δ 13 C measurements. Frontiers in Plant Science, 7(November), 1–12. https://doi.org/10.3389/fpls.2016.01710

Carlson, K. M., Goodman, L. K., & May-Tobin, C. C. (2015). Modeling Relationships between Water Table Depth and Peat Soil Carbon Loss in Southeast Asian Plantations. Environmental Research Letters, 10(7), 1–12. https://doi.org/https://doi.org/10.1088/1748-9326/10/7/074006.

Chadwick, O. A., Kelly, E. F., Merritts, D. M., & Amundson, R. G. (1994). Carbon dioxide consumption during soil development. Biogeochemistry, 24, 115–127. https://doi.org/10.1007/BF00003268

Clymo, R. (1984). The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 303, 605–654. https://doi.org/10.1098/rstb.1984.0002

Freeman, C., Ostle, N., & Kang, H. (2001). An enzymic “latch” on a global carbon store – A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149–149. https://doi.org/10.1038/35051650

Glatzel, S., Basiliko, N., & Moore, T. (2004). Carbon dioxide and methane production potentials of peats from natural, harvested, and restored sites, eastern Quebec, Canada. Wetlands, 24, 261–267. https://doi.org/https://doi.org/10.1672/0277-5212(2004)024[0261:CDAMPP]2.0.CO;2.

Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., & Osaki, M. (2007). Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biology, 13, 412–425. https://doi.org/https://doi.org/10.1111/j.1365-2486.2006.01301.x.

Hoag, R. S., & Price, J. S. (1997). The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns. Journal of Contaminant Hydrology, 28, 193–205. https://doi.org/10.1016/S0169-7722(96)00085-X

Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wosten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7, 1505–1514. https://doi.org/http://dx.doi.org/10.5194/bg-7-1505-2010.

Hoyos-santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., Lopez, O. R., & Sjogersten, S. (2016). Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology and Biochemistry, 103, 86–96. https://doi.org/. http://dx.doi.org/10.1016/j.soilbio.2016.08.017.

IAEA. (1992). Manual on Measurement of Methane and Nitrous Oxide Emission from Agricultural (TECHDOC-674). International Atomic Energy Agency.

ICALRRD. (2019). Indonesian Peatland Map at Scale 1:50.000. Indonesian Center for Agricultural Land Resources Research and Development.

Ishikura, K., Yamada, H., Toma, Y., Takakai, F., Morishita, T., Darung, U., Limin, A., Limin, S. H., & Hatano, R. (2017). Effect of Groundwater Level Fluctuation on Soil Respiration Rate of Tropical Peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 1(63), 1–13. https://doi.org/https://doi.org/10.1080/00380768.2016.1244652

Keiluweit, M., Nico, P. S., Kleber, M., & Fendorf, S. (2016). Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry, 127, 157–171. https://doi.org/10.1007/s10533-015-0180-6

Knorr, K. H., Lischeid, G., & Blodau, C. (2009). Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma, 153, 379–392. https://doi.org/10.1016/j.geoderma.2009.08.023

Krumins, J., Klavins, M., Seglins, V., & Kaup, E. (2012). Comparative study of peat composition by using FT-IR spectroscopy. Material Science and Applied Chemistry, 26, 106–114.

Kuzyakov, Y., & Gavrichkova, O. (2010). Time lag between photosynthesis and carbon dioxide efflux from soil : a review of mechanisms and controls. Global Change Biology, 16, 3386–3406. https://doi.org/10.1111/j.1365-2486.2010.02179.x

Lafleur, P. M., Moore, T. R., Roulet, N. T., & Frolking, S. (2005). Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems, 8(619–629). https://doi.org/10.1007/s10021-003-0131-2

Laiho, R. (2006). Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology & Biochemistry, 38, 2011–2024. https://doi.org/https://doi.org/10.1016/j.soilbio.2006.02.017.

Makiranta, P., Laiho, R., Fritze, H., Hytonen, J., Laine, J., & Minkkinen, K. (2009). Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology & Biochemistry, 41(4), 695–703. https://doi.org/10.1016/j.soilbio.2009.01.004

Masganti., Notohadikusumo, T., Maas, A., & Radjagukguk, B. (2001). Hydrophobicity and its impact on chemical properties of peat. In J. Rieley & S. Page (Eds.), Proceeding of the International Symposium on Tropical Peatlands (pp. 109–113).

Matejkove, S., & Simon, T. (2012). Application of FTIR spectroscopy for evaluation of hydrophobic/hydrophilic organic components in arable soil. Plant, Soil, and Environment, 58(4), 192–195. https://www.researchgate.net/publication/279644946

Melling, L., Goh, K. J., Chaddy, A., & Hatano, R. (2013). Soil CO2 fluxes from different ages of oil palm in tropical peatland of Sarawak, Malaysia as influenced by environmental and soil properties. Acta Horticulturae, 982, 25–35. https://doi.org/10.17660/ActaHortic.2013.982.2

Melling, L., & Hensen, I. A. (2011). Greenhouse gas exchange of tropical peatlands-A review. Journal of Oil Palm Research, 23, 1087–1095.

Mezbahuddin, M., Grant, R. F., & Hirano, T. (2014). Modeling Effects of Seasonal Variation in Water Table Depth on Net Ecosystem CO2 Exchange of a Tropical Peatland. Biogeosciences, 11(3), 577–599. https://doi.org/https://doi.org/10.5194/bg-11-577-2014.

Michel, J. C., Riviere, L. M., & Bellon-Fontaine, M. N. (2001). Measurement of the wettability of organic materials in relation to water content by the capillary rise method. European Journal of Soil Science, 52, 459–467. https://doi.org/10.1046/j.1365-2389.2001.00392.x

Moyano, F. E., Manzoni, S., & Chenu, C. (2013). Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biology and Biochemistry, 59, 72–85. https://doi.org/10.1016/j.soilbio.2013.01.002

Nieveen, J. P., Campbell, D. I., Schipper, L. A., & Blair, I. . J. (2005). Carbon exchange of grazed pasture on a drained peat soil. Global Change Biology, 11(4), 607–618. https://doi.org/10.1111/j.1365-2486.2005.00929.x

Nurzakiah, S., Sabiham, S., Nugroho, B., & Nursyamsi, D. (2014). Estimation of the potential carbon emission from acrotelmic and catotelmic peats. Journal of Tropical Soil, 19, 91–99. https://doi.org/https://doi.org/10.5400/jts.2014.v19i2.81-89.

Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., & Cappellen, P. V. (2016). Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75–84. https://doi.org/10.1016/j.chemgeo.2016.03.010

Rezanezhad, F., Quinton, W. L., Price, J. S., Elrick, D., Elliot, T., & Shook, K. R. (2010). Influence of pore size and geometry on peat unsaturated hydraulic conductivity computed from 3D computed tomography image analysis. HYDROLOGICAL PROCESSES, 24, 2983–2994. https://doi.org/10.1002/hyp.7709

Rieley, J., & Page, S. (2016). Tropical Peatland of the World. In M. Osaki & N. Tsuji (Eds.), Tropical Peatland Ecosystems (1st ed., pp. 3–32). Springer Japan. https://doi.org/10.1007/978-4-431-55681-7

Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65–105. https://doi.org/10.1016/s0016-7061(96)00036-5

Sotta, E. D., Meir, P., Malhi, Y., Nobre, A. D., & Hodnett, M. (2004). Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology, 10(5), 601–617. https://doi.org/https://doi.org/10.1111/j.1529-8817.2003.00761.x.

Sundari, S., Hirano, T., Yamada, H., Kusin, K., & Limin, S. (2012). Effect of groundwater level on soil respiration in tropical peat swamp forests. Journal of Agricultural Meteorology, 68(2), 121–134.

Utami, S. N. H., Maas, A., Radjaguguk, B., & Purwanto, B. H. (2009). Sifat fisik, kimia, dan FTIR spektrofotometri gambut hidrofobik Kalimantan Tengah. Jurnal Tanah Tropika, 14(2), 159–166.

Valat, B., Jouany, C., & Riviere, L. M. (1991). Characterization of the wetting properties of air-dried peats and composts. Soil Science, 152(2), 100–107.

Wakhid, N., Hirano, T., Okimoto, Y., Nurzakiah, S., & Nursyamsi, D. (2017). Soil Carbon Dioxide Emissions from a Rubber Plantation on Tropical Peat. Science of the Total Environment, 581–582(857–865). https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.01.035.

Winarna. (2015). Pengaruh kedalaman muka air tanah dan dosis terak baja terhadap hidrofobisitas tanah gambut, emisi karbon, dan produksi kelapa sawit. IPB University.

Refbacks

  • There are currently no refbacks.