Carbon dioxide emission and peat hydrophobicity in tidal peatlands
Abstract
Keywords
Full Text:
PDFReferences
Agus, F., Marwanto, S., Dariah, A., Husen, E., Wigena, I. G. P., Maswar, & Setyanto, P. (2013, November). Peat CO2 emissions from several land use types in Indonesia. MPOB International Palm Oil Congress (PIPOC).
Andersen, R., Chapman, S. J., & Artz, R. R. E. (2013). Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry, 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003
Artz, R. R. E., Chapman, S. J., Robertson, A. H. J., Potts, J. M., Laggoun-De’farge, F., Gogo, S., Comont, L., Disnar, J. R., & Francez, A. J. (2008). FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biology and Biochemistry, 40(2), 515–527. https://doi.org/10.1016/j.soilbio.2007.09.019.
Azri. (1999). Sifat kering tidak balik tanah gambut dari Jambi dan Kalimantan Tengah: analisis berdasarkan kadar air kritis, kemasaman total, gugus fungsional COOH dan OH-fenolat. IPB University.
Blessing, C. H., Barthel, M., Gentsch, L., & Buchmann, N. (2016). Strong coupling of shoot assimilation and soil respiration during drought and recovery periods in beech as indicated by natural abundance δ 13 C measurements. Frontiers in Plant Science, 7(November), 1–12. https://doi.org/10.3389/fpls.2016.01710
Carlson, K. M., Goodman, L. K., & May-Tobin, C. C. (2015). Modeling Relationships between Water Table Depth and Peat Soil Carbon Loss in Southeast Asian Plantations. Environmental Research Letters, 10(7), 1–12. https://doi.org/https://doi.org/10.1088/1748-9326/10/7/074006.
Chadwick, O. A., Kelly, E. F., Merritts, D. M., & Amundson, R. G. (1994). Carbon dioxide consumption during soil development. Biogeochemistry, 24, 115–127. https://doi.org/10.1007/BF00003268
Clymo, R. (1984). The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 303, 605–654. https://doi.org/10.1098/rstb.1984.0002
Freeman, C., Ostle, N., & Kang, H. (2001). An enzymic “latch” on a global carbon store – A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149–149. https://doi.org/10.1038/35051650
Glatzel, S., Basiliko, N., & Moore, T. (2004). Carbon dioxide and methane production potentials of peats from natural, harvested, and restored sites, eastern Quebec, Canada. Wetlands, 24, 261–267. https://doi.org/https://doi.org/10.1672/0277-5212(2004)024[0261:CDAMPP]2.0.CO;2.
Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., & Osaki, M. (2007). Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biology, 13, 412–425. https://doi.org/https://doi.org/10.1111/j.1365-2486.2006.01301.x.
Hoag, R. S., & Price, J. S. (1997). The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns. Journal of Contaminant Hydrology, 28, 193–205. https://doi.org/10.1016/S0169-7722(96)00085-X
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wosten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7, 1505–1514. https://doi.org/http://dx.doi.org/10.5194/bg-7-1505-2010.
Hoyos-santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., Lopez, O. R., & Sjogersten, S. (2016). Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology and Biochemistry, 103, 86–96. https://doi.org/. http://dx.doi.org/10.1016/j.soilbio.2016.08.017.
IAEA. (1992). Manual on Measurement of Methane and Nitrous Oxide Emission from Agricultural (TECHDOC-674). International Atomic Energy Agency.
ICALRRD. (2019). Indonesian Peatland Map at Scale 1:50.000. Indonesian Center for Agricultural Land Resources Research and Development.
Ishikura, K., Yamada, H., Toma, Y., Takakai, F., Morishita, T., Darung, U., Limin, A., Limin, S. H., & Hatano, R. (2017). Effect of Groundwater Level Fluctuation on Soil Respiration Rate of Tropical Peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 1(63), 1–13. https://doi.org/https://doi.org/10.1080/00380768.2016.1244652
Keiluweit, M., Nico, P. S., Kleber, M., & Fendorf, S. (2016). Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry, 127, 157–171. https://doi.org/10.1007/s10533-015-0180-6
Knorr, K. H., Lischeid, G., & Blodau, C. (2009). Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma, 153, 379–392. https://doi.org/10.1016/j.geoderma.2009.08.023
Krumins, J., Klavins, M., Seglins, V., & Kaup, E. (2012). Comparative study of peat composition by using FT-IR spectroscopy. Material Science and Applied Chemistry, 26, 106–114.
Kuzyakov, Y., & Gavrichkova, O. (2010). Time lag between photosynthesis and carbon dioxide efflux from soil : a review of mechanisms and controls. Global Change Biology, 16, 3386–3406. https://doi.org/10.1111/j.1365-2486.2010.02179.x
Lafleur, P. M., Moore, T. R., Roulet, N. T., & Frolking, S. (2005). Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems, 8(619–629). https://doi.org/10.1007/s10021-003-0131-2
Laiho, R. (2006). Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology & Biochemistry, 38, 2011–2024. https://doi.org/https://doi.org/10.1016/j.soilbio.2006.02.017.
Makiranta, P., Laiho, R., Fritze, H., Hytonen, J., Laine, J., & Minkkinen, K. (2009). Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology & Biochemistry, 41(4), 695–703. https://doi.org/10.1016/j.soilbio.2009.01.004
Masganti., Notohadikusumo, T., Maas, A., & Radjagukguk, B. (2001). Hydrophobicity and its impact on chemical properties of peat. In J. Rieley & S. Page (Eds.), Proceeding of the International Symposium on Tropical Peatlands (pp. 109–113).
Matejkove, S., & Simon, T. (2012). Application of FTIR spectroscopy for evaluation of hydrophobic/hydrophilic organic components in arable soil. Plant, Soil, and Environment, 58(4), 192–195. https://www.researchgate.net/publication/279644946
Melling, L., Goh, K. J., Chaddy, A., & Hatano, R. (2013). Soil CO2 fluxes from different ages of oil palm in tropical peatland of Sarawak, Malaysia as influenced by environmental and soil properties. Acta Horticulturae, 982, 25–35. https://doi.org/10.17660/ActaHortic.2013.982.2
Melling, L., & Hensen, I. A. (2011). Greenhouse gas exchange of tropical peatlands-A review. Journal of Oil Palm Research, 23, 1087–1095.
Mezbahuddin, M., Grant, R. F., & Hirano, T. (2014). Modeling Effects of Seasonal Variation in Water Table Depth on Net Ecosystem CO2 Exchange of a Tropical Peatland. Biogeosciences, 11(3), 577–599. https://doi.org/https://doi.org/10.5194/bg-11-577-2014.
Michel, J. C., Riviere, L. M., & Bellon-Fontaine, M. N. (2001). Measurement of the wettability of organic materials in relation to water content by the capillary rise method. European Journal of Soil Science, 52, 459–467. https://doi.org/10.1046/j.1365-2389.2001.00392.x
Moyano, F. E., Manzoni, S., & Chenu, C. (2013). Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biology and Biochemistry, 59, 72–85. https://doi.org/10.1016/j.soilbio.2013.01.002
Nieveen, J. P., Campbell, D. I., Schipper, L. A., & Blair, I. . J. (2005). Carbon exchange of grazed pasture on a drained peat soil. Global Change Biology, 11(4), 607–618. https://doi.org/10.1111/j.1365-2486.2005.00929.x
Nurzakiah, S., Sabiham, S., Nugroho, B., & Nursyamsi, D. (2014). Estimation of the potential carbon emission from acrotelmic and catotelmic peats. Journal of Tropical Soil, 19, 91–99. https://doi.org/https://doi.org/10.5400/jts.2014.v19i2.81-89.
Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., & Cappellen, P. V. (2016). Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75–84. https://doi.org/10.1016/j.chemgeo.2016.03.010
Rezanezhad, F., Quinton, W. L., Price, J. S., Elrick, D., Elliot, T., & Shook, K. R. (2010). Influence of pore size and geometry on peat unsaturated hydraulic conductivity computed from 3D computed tomography image analysis. HYDROLOGICAL PROCESSES, 24, 2983–2994. https://doi.org/10.1002/hyp.7709
Rieley, J., & Page, S. (2016). Tropical Peatland of the World. In M. Osaki & N. Tsuji (Eds.), Tropical Peatland Ecosystems (1st ed., pp. 3–32). Springer Japan. https://doi.org/10.1007/978-4-431-55681-7
Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65–105. https://doi.org/10.1016/s0016-7061(96)00036-5
Sotta, E. D., Meir, P., Malhi, Y., Nobre, A. D., & Hodnett, M. (2004). Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology, 10(5), 601–617. https://doi.org/https://doi.org/10.1111/j.1529-8817.2003.00761.x.
Sundari, S., Hirano, T., Yamada, H., Kusin, K., & Limin, S. (2012). Effect of groundwater level on soil respiration in tropical peat swamp forests. Journal of Agricultural Meteorology, 68(2), 121–134.
Utami, S. N. H., Maas, A., Radjaguguk, B., & Purwanto, B. H. (2009). Sifat fisik, kimia, dan FTIR spektrofotometri gambut hidrofobik Kalimantan Tengah. Jurnal Tanah Tropika, 14(2), 159–166.
Valat, B., Jouany, C., & Riviere, L. M. (1991). Characterization of the wetting properties of air-dried peats and composts. Soil Science, 152(2), 100–107.
Wakhid, N., Hirano, T., Okimoto, Y., Nurzakiah, S., & Nursyamsi, D. (2017). Soil Carbon Dioxide Emissions from a Rubber Plantation on Tropical Peat. Science of the Total Environment, 581–582(857–865). https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.01.035.
Winarna. (2015). Pengaruh kedalaman muka air tanah dan dosis terak baja terhadap hidrofobisitas tanah gambut, emisi karbon, dan produksi kelapa sawit. IPB University.
Refbacks
- There are currently no refbacks.