Effects of light intensity and co-inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria

Maria Theresia Sri Budiastuti, Djoko Purnomo, Supriyono Supriyono, Bambang Pujiasmanto, Desy Setyaningrum


Indigofera tinctoria is a legume that is cultivated as a source of natural indigo dyes. As a legume, Indigofera tinctoria is capable of symbiosis with soil microbes. This study evaluates the effects of light intensity and microbial inoculation on root growth and nodulation. The study used a complete randomized block design with a split-plot pattern. Light intensity was the main plot with four levels of light intensity 100%, 50%, 25%, and 10%. Microbial inoculation was a subplot with four levels without inoculation, mycorrhizae inoculation, rhizobium inoculation, and double inoculation with both mycorrhizae and rhizobium. The results obtained show that light intensity and microbial inoculation affected root length, root fresh weight, root biomass, and the number of nodules. 50% light intensity was optimum for root length, while 100% light intensity was optimum for root fresh weight, root biomass, and a number of nodules. Root growth and nodulation were further increased with double inoculation. The combination of light intensity and microbial inoculation affected root biomass and nodulation. The combination of 100% light intensity and double inoculation resulted in the highest root biomass and nodule numbers. Mycorrhizae and rhizobium have a synergistic relationship to nodulation and root growth. Double inoculation with mycorrhizae and rhizobium efficiently increased root biomass and the number of nodules under low or high light intensity.


Co-inoculation; Light intensity; Number of nodules; Root biomass; Root length

Full Text:



Abd-Alla, M. H., El-Enany, A. W. E., Nafady, N. A., Khalaf, D. M., & Morsy, F. M. (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 169(1), 49–58. https://doi.org/10.1016/j.micres.2013.07.007

Andrade, S. A. L., Abreu, C. A., De Abreu, M. F., & Silveira, A. P. D. (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 26(2), 123–131. https://doi.org/10.1016/j.apsoil.2003.11.002

Angelini, L. G., Tozzi, S., & Nassi O Di Nasso, N. (2004). Environmental factors affecting productivity, indican content, and indigo yield in Polygonum tinctorium Ait., a subtropical crop grown under temperate conditions. Journal of Agricultural and Food Chemistry, 52(25), 7541–7547. https://doi.org/10.1021/jf040312b

Bonomi, H. R., Posadas, D. M., Paris, G., Del Carmen Carrica, M., Frederickson, M., Pietrasanta, L. I., … Goldbaum, F. A. (2012). Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proceedings of the National Academy of Sciences of the United States of America, 109(30), 12135–12140. https://doi.org/10.1073/pnas.1121292109

Chaudhary, K. S. (2019). the Role of Vam- Rhizobium Interaction in Growth of Green Gram ( Vigna Radiata Var . Tarm-1 ) At Different Phosphate Levels. 19, 1689–1691.

Coelho, G. C., Rachwal, M. F. G., Dedecek, R. A., Curcio, G. R., Nietsche, K., & Schenkel, E. P. (2007). Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil. Biochemical Systematics and Ecology, 35(2), 75–80. https://doi.org/10.1016/j.bse.2006.09.001

Denton, M. D., Phillips, L. A., Peoples, M. B., Pearce, D. J., Swan, A. D., Mele, P. M., & Brockwell, J. (2017). Legume inoculant application methods: effects on nodulation patterns, nitrogen fixation, crop growth, and yield in narrow-leaf lupin and faba bean. Plant and Soil, 419(1–2), 25–39. https://doi.org/10.1007/s11104-017-3317-7

Franzini, V. I., Azcón, R., Ruiz-Lozano, J. M., & Aroca, R. (2019). Rhizobial symbiosis modifies root hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. Planta, 249(4), 1207–1215. https://doi.org/10.1007/s00425-018-03076-0

Gage, D. J. (2004). 2017 Report to Parliament - Meeting Carbon Budgets: Closing the policy gap. Microbiology and Molecular Biology Reviews : MMBR, 68(June), 203. https://doi.org/10.1128/MMBR.68.2.280

Gommers, C. M. M., Visser, E. J. W., Onge, K. R. S., Voesenek, L. A. C. J., & Pierik, R. (2013). Shade tolerance: When growing tall is not an option. Trends in Plant Science, 18(2), 65–71. https://doi.org/10.1016/j.tplants.2012.09.008

Handayani, W., Kristijanto, A. I., & Hunga, A. I. R. (2019). A water footprint case study in Jarum village, Klaten, Indonesia: The production of natural-colored batik. Environment, Development, and Sustainability, 21(4), 1919–1932. https://doi.org/10.1007/s10668-018-0111-5

Hariri, M. R., Chikmawati, T., & Hartana, A. (2017). Genetic diversity of Indigofera tinctoria L. In java and Madura islands as natural batik dye based on inter-simple sequence repeat markers. Journal of Mathematical and Fundamental Sciences, 49(2), 105–115. https://doi.org/10.5614/j.math.fund.sci.2017.49.2.1

Haro, H., Sanon, K. B., Le Roux, C., Duponnois, R., & Traoré, A. S. (2018). Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso. Symbiosis, 74(2), 107–120. https://doi.org/10.1007/s13199-017-0478-3

Hemmat Jou, M. H., & Besalatpour, A. A. (2018). Interactive effects of co-inoculation of Bradyrhizobium japonicum strains and mycorrhiza species on soybean growth and nutrient contents in plant. Journal of Plant Nutrition, 41(1), 10–18. https://doi.org/10.1080/01904167.2017.1346666

Houx III, J. H., McGraw, R. L., Fritschi, F. B., & Navarrete-Tindall, N. E. (2009). Effects of shade on growth and nodulation of three native legumes with potential for use in agroforestry. Native Plants Journal, 10(3), 232–238.

Johnson, N. C., Wilson, G. W. T., Wilson, J. A., Miller, R. M., & Bowker, M. A. (2015). Mycorrhizal phenotypes and the Law of the Minimum. New Phytologist, 205(4), 1473–1484. https://doi.org/10.1111/nph.13172

Kristijanto, A., Handayani, W., & Anna Levi, P. (2011). The Effectiveness of Anaerobic Baffled Reactor and Rotating Biological Contactor in Batik Wastewater Treatment. Makara Journal of Technology, 15(2), 168. https://doi.org/10.7454/mst.v15i2.935

Kumar, A., Shukla, A., Hashmi, S., & Tewari, R. K. (2007). Effect of trees on colonization of intercrops by vesicular arbuscular mycorrhizae in agroforestry systems. Indian Journal of Agricultural Sciences, 77(5), 291–298.

Lau, J. A., Bowling, E. J., Gentry, L. E., Glasser, P. A., Monarch, E. A., Olesen, W. M., … Young, R. T. (2012). Direct and interactive effects of light and nutrients on the legume-rhizobia mutualism. Acta Oecologica, 39, 80–86. https://doi.org/10.1016/j.actao.2012.01.004

Li, A. R., Smith, S. E., Smith, F. A., & Guan, K. Y. (2012). Inoculation with arbuscular mycorrhizal fungi suppresses initiation of haustoria in the root hemiparasite Pedicularis tricolor. Annals of Botany, 109(6), 1075–1080. https://doi.org/10.1093/aob/mcs028

Li, T., Liu, L. N., Jiang, C. D., Liu, Y. J., & Shi, L. (2014). Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. Journal of Photochemistry and Photobiology B: Biology, 137, 31–38. https://doi.org/10.1016/j.jphotobiol.2014.04.022

Mielke, M. S., & Schaffer, B. (2010). Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environmental and Experimental Botany, 68(2), 113–121. https://doi.org/10.1016/j.envexpbot.2009.11.007

Mortimer, P. E., Pérez-Fernández, M. A., & Valentine, A. J. (2008). The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology and Biochemistry, 40(5), 1019–1027. https://doi.org/10.1016/j.soilbio.2007.11.014

Mortimer, Peter E., Pérez-Fernández, M. A., & Valentine, A. J. (2012). Arbuscular mycorrhiza maintains nodule function during external NH 4+supply in Phaseolus vulgaris (L.). Mycorrhiza, 22(3), 237–245. https://doi.org/10.1007/s00572-011-0396-9

Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

Rinnan, R., Keinänen, M. M., Kasurinen, A., Asikainen, J., Kekki, T. K., Holopainen, T., … Michelsen, A. (2005). Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass. Global Change Biology, 11(4), 564–574. https://doi.org/10.1111/j.1365-2486.2005.00933.x

Sánchez-Díaz, M., Pardo, M., Antolín, M., Peña, J., & Aguirreolea, J. (1990). Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Science, 71(2), 215–221. https://doi.org/10.1016/0168-9452(90)90011-C

Sarr, P. S., & Yamakawa, T. (2015). Nodulation, Nitrogen Fixation, and Growth of Rhizobia-Inoculated Cowpea (Vignaunguiculata L. Walp) In Relation with External Nitrogen and Light Intensity. 1–11.

Sauvadet, M., den Meersche, K. Van, Allinne, C., Gay, F., de Melo Virginio Filho, E., Chauvat, M., … Harmand, J. M. (2019). Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Science of the Total Environment, 649, 1065–1074. https://doi.org/10.1016/j.scitotenv.2018.08.291

Shukla, A., Kumar, A., Chaturvedi, O. P., Nagori, T., Kumar, N., & Gupta, A. (2018). Efficacy of rhizobial and phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi to ameliorate shade response on six pulse crops. Agroforestry Systems, 92(2), 499–509. https://doi.org/10.1007/s10457-017-0070-0

Shukla, A., Kumar, A., Jha, A., Chaturvedi, O. P., Prasad, R., & Ajit Gupta. (2009). Effects of shade on arbuscular mycorrhizal colonization and growth of crops and tree seedlings in Central India. Agroforestry Systems, 76(1), 95–109. https://doi.org/10.1007/s10457-008-9182-x

Sindhu, P. V., Kanakamany, M. T., & Beena, C. (2016). Effect of organic manures and biofertilizers on herbage yield, quality, and soil nutrient balance in Indigofera tinctoria cultivation. Journal of Tropical Agriculture, 54(1), 16–20.

Smith, F. A., Grace, E. J., & Smith, S. E. (2009). More than a carbon economy: Nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist, 182(2), 347–358. https://doi.org/10.1111/j.1469-8137.2008.02753.x

Taiz, L., & Zeiger, E. (2006). Plant Physiology (4th ed.). Massachusetts, USA: 4th Edition, Sinauer Associates Inc. Publishers.

Tilak, K. V. B. R., Ranganayaki, N., & Manoharachari, C. (2006). Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). European Journal of Soil Science, 57(1), 67–71. https://doi.org/10.1111/j.1365-2389.2006.00771.x

Wu, Y. shan, Yang, F., Gong, W. Zhuo, Ahmed, S., Fan, Y. fang, Wu, X. ling, … Yang, W. yu. (2017). Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. Journal of Integrative Agriculture, 16(6), 1331–1340. https://doi.org/10.1016/S2095-3119(16)61525-3

Xavier, L. J. C., & Germida, J. J. (2003). Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biology and Fertility of Soils, 37(5), 261–267. https://doi.org/10.1007/s00374-003-0605-6

Xu, L., Yan, D., Ren, X., Wei, Y., Zhou, J., Zhao, H., & Liang, M. (2016). Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Industrial Crops and Products, 94, 574–585. https://doi.org/10.1016/j.indcrop.2016.09.023

Yang, C. W., Wang, P., Li, C. Y., Shi, D. C., & Wang, D. L. (2008). Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica, 46(1), 107–114. https://doi.org/10.1007/s11099-008-0018-8


  • There are currently no refbacks.