Predicting peatland groundwater table and soil moisture dynamics affected by drainage level

Bambang Widiarso, Slamet Minardi, Komariah Komariah, Tino Orciny Chandra, Mohamed Abdesalam Elmahdi, Masateru Senge


Excessive drainage of peatlands can cause subsidence and irreversible drying; therefore, it is necessary to predict groundwater levels in peatlands to ensure adequate water for crops and control excessive water loss simultaneously. This study aimed to predict the peatland groundwater level and soil moisture affected by drainage. This research was conducted in a peatland located in Rasau Jaya Umum, Kubu Raya Regency, West Kalimantan Province, Indonesia from February to December 2016. Three treatments of drainage setting were established with maize cropping: without drainage (P0) and drainage channel with water level maintained at depths of 30 cm (P1) and 60 cm (P2) from the soil surface. The results indicated that a polynomial regression model is a good approach to predicting groundwater table level and soil moisture in peatlands, with R2 values ranging 0.71-0.96 and 0.65-0.93, respectively. For agricultural purposes, maintaining the water level at 30 cm from the soil surface in the drainage channel appears to be the ideal level as adequate soil moisture is provided for annual cash crops and drying is prevented simultaneously.


Peatland drainage; Peatland evapotranspiration; Peatland groundwater

Full Text:



Abdullahi, M. G., & Garba, I. (2016). Effect of Rainfall on Groundwater Level Fluctuation in Terengganu, Malaysia. Journal of Remote Sensing & GIS, 4(2), 1–5.

Agus, F., & Subiksa, I. G. M. (2008). Lahan Gambut: Potensi untuk Pertanian dan Aspek Lingkungan. Bogor, Indonesia: Balai Penelitian Tanah dan ICRAF.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Requirements. Irrigation and Drainage. Paper No. 56. Rome, Italy: FAO.

Beckwith, C. W., Baird, A. J., & Heathwaite, A. L. (2003a). Anisotropy and Depth-Related Heterogeneity of Hydraulic Conductivity in a Bog Peat. I: Laboratory Measurements. Hydrological Processes, 17(1), 89–101.

Beckwith, C. W., Baird, A. J., & Heathwaite, A. L. (2003b). Anisotropy and Depth-Related Heterogeneity of Hydraulic Conductivity in a Bog Peat. II: Modelling the Effects on Groundwater Flow. Hydrological Processes, 17(1), 103–113.

BPS Provinsi Kalimantan Barat. (2011). Kalimantan Barat dalam Angka 2011. Pontianak, Indonesia: BPS Provinsi Kalimantan Barat.

Chandra, T. O. (1989). Simulasi Pola Fluktuasi Muka Air Tanah Daerah Pasang Surut. Institute Pertanian Bogor.

Fan, J., Oestergaard, K. T., Guyot, A., & Lockington, D. A. (2014). Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia. Journal of Hydrology, 519, 1120–1129.

Fraser, C. J. D., Roulet, N. T., & Lafleur, M. (2001). Groundwater flow patterns in a large peatland. Journal of Hydrology, 246(1–4), 142–154.

Getirana, A. C. V., Dutra, E., Guimberteau, M., Kam, J., Li, H. Y., Decharme, B., … Sheffield, J. (2014). Water Balance in the Amazon Basin from a Land Surface Model Ensemble. Journal of Hydrometeorology, 15, 2586–2614.

Hayward, P. M., & Clymo, R. S. (1982). Profiles of Water Content and Pore Size in Sphagnum and Peat, and their Relation to Peat Bog Ecology. Proceedings of the Royal Society of London. Series B, 215, 299–325.

Imanudin, M. S., & Bakri. (2016). Model drainase lahan gambut untuk budidaya kelapa. In Seminar dan Lokakarya Kelapa Sawit Tema Pengembangan Kelapa Sawit Terpadu dan Berkelanjutan (pp. 1–19). Palembang: Unsri-PERHEPI.

Jassas, H., Kanoua, W., & Merkel, B. (2015). Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) Using the Surface Energy Balance Algorithm for Land (SEBAL) and Water Balance. Geosciences, 5, 141–159.

Kremer, C., Pettolino, F., Bacic, A., & Drinnan, A. (2004). Distribution of Cell Wall Components in Sphagnum hyaline Cells and in Liverwort and Hornwort Elaters. Planta, 219(6), 1023–1035.

Lafleur, P. M., Hember, R. A., Admiral, S. W., & Roulet, N. T. (2005). Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrological Processes, 19(18), 3533–3550.

Manghi, F., Mortazavi, B., Crother, C., & Hamdi, M. R. (2009). Estimating Regional Groundwater Recharge Using a Hydrological Budget Method. Water Resources Management, 23, 2475–2489.

Ong, Y. B., & Yogeswaren, Y. (1992). Peatland as a Resource for Water Supply in Sarawak. In A. B. Yusoff & S. L. Tan (Eds.), Tropical peat : Proceedings of the International Symposium on Tropical Peatland. Kuching, Sarawak, Malaysia: Malaysian Agricultural Research and Development Institute.

Querner, E. P., Mioduszewski, W., Povilaitis, A., & Slesicka, A. (2010). Modeling peatland hydrology: Three cases from Northern Europe. Polish Journal of Environmental Studies.

Runtunuwu, E., Kartiwa, B., Sudarman, K., Nugroho, W. T., & Firmansyah, A. (2011). DINAMIKA ELEVASI MUKA AIR PADA LAHAN DAN SALURAN DI LAHAN GAMBUT. Riset Geologi Dan Pertambangan, 21(2), 63–74.

Schwärzel, K., Šimůnek, J., Van Genuchten, M. T., & Wessolek, G. (2006). Measurement and modeling of soil-water dynamics and evapotranspiration of drained peatland soils. Journal of Plant Nutrition and Soil Science, 169(6), 762–774.

Suswati, D. (2012). Pemanfaatan beberapa Amelioran untuk Meningkatkan Kelas Kesesuaian Lahan Gambut dalam Pengembangan Jagung di Rasau Jaya III Pontianak. Universitas Gadjah Mada.

Tarigan, S. D. (2011). Neraca air lahan gambut yang ditanami kelapa sawit si Kabupaten Seruyan, Kalimantan Tengah. Jurnal Ilmu Tanah Dan Lingkungan, 13(1).

Whittington, P., & Price, J. S. (2013). Effect of Mine Dewatering on the Peatlands of the James Bay Lowland: the Role of Marine Sediments on Mitigating Peatland Drainage. Hydrological Processes, 27(13), 1845–1853.

Xu, C. Y., & Singh, V. P. (2005). Evaluation of Three Complementary Relationship Evapotranspiration Models by Water Balance Approach to Estimate Actual Regional Evapotranspiration in Different Climatic Regions. Journal of Hydrology, 308(1–4), 105–121.

Yihdego, Y., & Khalil, A. (2017). Groundwater Resources Assessment and Impact Analysis Using a Conceptual Water Balance Model and Time Series Data Analysis: Case of Decision Making Tool. Hydrology, 4(25).


  • There are currently no refbacks.