Silicon (Si) and salinity stress on the agronomic performances of bok choy (Brassica rappa L.) in an Entisols

Kharisun Kharisun, Mochammad Nazarudin Budiono, Nur Prihatiningsih, Ratri Noorhidayah, Ningsih Lamorunga

Abstract

Silicon is a beneficial nutrient that has the potential to alleviate the abiotic stress of bok choy grown under salinity stress on entisols. Indonesia has wide areas of entisol soils along its coastline, which could be planted with bok choy. However, salinity conditions pose a problem in entisol soils. The objective of this research was to evaluate the effect of silicon on the agronomic performance of bok choy grown on an Entisols under salinity stress conditions. This research was conducted at the screen house of the Faculty of Agriculture, Jenderal Soedirman University, from May to August 2019. The experimental design was a completely randomized completely block design (RCBD) consisting of 16 treatments with three replications. The treatments comprised two factors: the dosage of silicon fertilizer, which was 0, 5, 10, or 15 g pot-1; and salinity stress, with a level of 0, 1, 2, or 3 dS m-1 pot-1. Observed variables included plant height (cm), number of leaves (strands), leaf area (cm2), fresh shoot weight (g), dry shoot weight (g), fresh root weight (g), dry root weight (g), fresh plant weight (g), and dry plant weight (g). The results showed that the provision of silicon (Si) fertilizer from zeolite and sugarcane bagasse compost (SCB) improved plant height, number of leaves, leaf area, fresh plant weight, and dry plant weight of bok choy plants under salinity stress conditions on entisol soil. At a silicon dosage of 10 g pot-1, fresh plant weight (production of bok choy) was 64.18% greater compared to the control. Increasing soil salinity up to 3 dS m-1 of soil decreased the plant height and number of leaves but did not significantly affect fresh shoot weight, dry shoot weight, fresh plant weight, dry fresh plant weight, fresh root weight, or dry root weight.

Keywords

Bok choy; Silicon fertilizer; Salt stress; Entisols

Full Text:

PDF

References

Ahmed, M., Qadeer, U., & Aslam, M. A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6(3), 594–607.

Amrullah, Sopandie, D., Sugianta, & Junaedi, A. (2014). Peningkatan produktivitas tanaman padi (Oryza sativa L.) melalui pemberian nano silika. Jurnal Pangan, 23(1), 17–32.

Auliani, P. A. (2013). Panjang Garis Pantai Indonesia Capai 99.000 Kilometer. Accessed from https://Nationalgeographic. Grid. Id/Read/13285616/Terbaru-Panjang-Garis-Pantai-Indonesia-Capai-99000-Kilometer.

Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO.

Azizi, M., Abdolzadeh, A., Mehrabanjoubani, P., & Sadeghipour, H. R. (2016). Evaluation of effect of silicon on NaCl tolerance in annual Medicago scutellata L. Iranian Journal of Field Crops Research, 14(1).

Camargo, M. S. de, Rocha, G., & Korndörfer, G. H. (2013). Silicate fertilization of tropical soils: silicon availability and recovery index of sugarcane. Revista Brasileira de Ciência Do Solo, 37(5), 1267–1275.

Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371–379.

Epstein, E. (2009). Silicon: its manifold roles in plants. Annals of Applied Biology, 155(2), 155–160.

Farooq, M. A., Saqib, Z. A., Akhtar, J., Bakhat, H. F., Pasala, R.-K., & Dietz, K.-J. (2019). Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon, 11(4), 2193–2197.

Gerami, M., Fallah, A., & Moghadam, M. R. K. (2012). Study of potassium and sodium silicate on the morphological and chlorophyll content on the rice plant in pot experiment (Oryza Sativa L.). International Journal of Agriculture and Crop Sciences (IJACS), 4(10), 658–661.

Ghassemi-Golezani, K., & Lotfi, R. (2015). The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russian Journal of Plant Physiology, 62(5), 611–616.

Hanafy Ahmed, A. H., Harb, E. M., Higazy, M. A., & Morgan, S. H. (2008). Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research, 3(1), 1–26.

Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress (pp. 25–87). Springer.

Husnaeni, F., & Setiawati, M. R. (2018). Pengaruh Pupuk Hayati dan Anorganik Terhadap Populasi Azotobacter, Kandungan N, dan Hasil Pakcoy Pada Sistem Nutrient Film Technique. Jurnal Biodjati, 3(1), 90–98.

Hussein, M. M., & Abou-Baker, N. H. (2014). Growth and mineral status of moringa plants as affected by silicate and salicylic acid under salt stress. Int J Plants Soil Sci, 3, 63–177.

Hussein, M. M., Mehanna, H., & Abou-Baker, N. H. (2012). Growth, photosynthetic pigments, and mineral status of cotton plants as affected by salicylic acid and salt stress. Journal of Applied Sciences Research, November, 5476–5484.

Kertonegoro, B. D. (2001). Gumuk pasir pantai di DI Yogyakarta: Potensi dan pemanfaatannya untuk pertanian berkelanjutan. Prosiding Seminar Nasional Pemanfaatan Sumberdaya Lokal Untuk Pembangunan Pertanian Berkelanjutan. Universitas Wangsa Manggala Pada Tanggal, 2, 46–54.

Liu, B., Soundararajan, P., & Manivannan, A. (2019). Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants, 8(9), 307.

Ma, J. F., & Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier.

Makoi, J. H. J. R., & Verplancke, H. (2010). Effect of gypsum placement on the physical-chemical properties of a saline sandy loam soil. Australian Journal of Crop Science, 4(7), 556.

Mindari, W. (2009). Cekaman Garam dan Dampaknya Pada Kesuburan Tanah dan Pertumbuhan tanaman. Undergraduate Thesis, UPN" Veteran" Jawa Timur, Surabaya.

Muneer, S., Park, Y. G., Manivannan, A., Soundararajan, P., & Jeong, B. R. (2014). Physiological and proteomic analysis in chloroplasts of Solanum Lycopersicum L. under silicon efficiency and salinity stress. International Journal of Molecular Sciences, 15(12), 21803–21824.

Nascimento, I. D. O., Rodrigues, A. A. C., Braun, H., Santos, C. C., & Catarino, A. D. M. (2018). Silicon fertilization and seed microbiolization on disease severity and agronomic performance of upland rice. Revista Caatinga, 31(1), 126–134. https://doi.org/10.1590/1983-21252018v31n115rc

Ning, D., Song, A., Fan, F., Li, Z., & Liang, Y. (2014). Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance. Plos One, 9(7), e102681.

Oliveira, J. R. de, Koetz, M., Bonfim-Silva, E. M., & da Silva, T. J. A. (2016). Silicon fertilization and soil water tensions on rice development and yield. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(2), 138–143.

Prasetyo, T. B., Yasin, S., & Yeni, E. (2010). Pengaruh pemberian abu batubara sebagai sumber silika (Si) Bagi pertumbuhan dan produksi tanaman padi (Oryza sativa L). Jurnal Solum, 7(1), 1–6.

Putri, F. M., Suedy, S. W. A., & Darmanti, S. (2017). The effects of nano-silica fertilizer on the number of stomata, chlorophyll content, and growth of black rice (Oryza sativa L. Cv. Japonica)". Available online at: http://www.ejournal.undip.ac.id/indek.php/baf/index.

Sabaghnia, N., & Janmohammadi, M. (2015). Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes/Wpływ nanocząstek krzemionki na tolerancję zasolenia we wczesnym rozwoju niektórych genotypów soczewicy. Annales UMCS, Biologia, 69(2), 39–55.

Shahzad, M., Witzel, K., Zörb, C., & Mühling, K. H. (2012). Growth‐related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. Journal of Agronomy and Crop Science, 198(1), 46–56.

Singh, A. K., Kumar, R., Pareek, A., Sopory, S. K., & Singla-Pareek, S. L. (2012). Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Molecular Biotechnology, 52(3), 205–216.

Sipayung, R. (2003). Stres garam dan mekanisme toleransi tanaman. Undergraduate Thesis, USU Digital Library.

Soundararajan, P., Manivannan, A., Ko, C. H., & Jeong, B. R. (2018). Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘Rock Fire.’ Journal of Plant Growth Regulation, 37(1), 16–34.

Soundararajan, P., Manivannan, A., Ko, C. H., Muneer, S., & Jeong, B. R. (2017). Leaf physiological and proteomic analysis to elucidate silicon induced adaptive response under salt stress in Rosa hybrida ‘Rock Fire.’ International Journal of Molecular Sciences, 18(8), 1768.

Tantawy, A. S., Salama, Y. A. M., El-Nemr, M. A., & Abdel-Mawgoud, A. M. R. (2015). Nano silicon application improves salinity tolerance of sweet pepper plants. International Journal of ChemTech Research, 8(10), 11–17.

Usfiani, Budiyanto, G., & Mulyono. (2016). Pemanfaatan arang ampas tebu -azolla pada cabai keriting merah di lahan berpasir pantai, Samas, Bantul.

Yin, L., Wang, S., Tanaka, K., Fujihara, S., Itai, A., Den, X., & Zhang, S. (2016). Silicon‐mediated changes in polyamines participate in silicon‐induced salt tolerance in Sorghum bicolor L. Plant, Cell & Environment, 39(2), 245–258.

Yustinah. (2013). Keseimbangan absorpsi asam lemak bebas dan perosida di dalam minyak kelapa sawit mentah (CPO) menggunakan bioadsorben dari ampas tebu. Jurnal Konversi, 02(2), 59–67.

Zare, H. R., Ghanbarzadeh, Z., Behdad, A., & Mohsenzadeh, S. (2015). Effect of silicon and nano silicon on reduction of damage caused by salt stress in maize (Zea mays) seedlings. Iranian Journal Of Plant Biology, 7(26), 59–74.

Refbacks

  • There are currently no refbacks.