Potential Use of Alkaline-Activated Indonesian Pumice Powder as Lead Adsorbent in Solution System

Faridlotul Hasanah, Syaiful Anwar, Arief Hartono, Untung Sudadi


Pumice is a volcanic material that found abundant in Indonesia. Owing to its physicochemical characteristics it can be utilized as a low-cost natural adsorbent for cationic contaminants. This study aimed to assess the performances of adsorbents prepared from NaOH-activated powder of Lombok and Kediri pumices for lead removal in solution systems based on their maximum adsorption capacity and removal efficiency parameters. The adsorption tests were done in batch experimentation using pumice powder of 74 μm particle size activated with 0.5, 1, and 2 M NaOH and lead solutions with initial concentrations of 0-260 mg.L-1. The most favorable NaOH activation concentration for both pumices was 0.5 M which resulted from Lombok pumice prepared-adsorbent with Pb maximum adsorption capacity based on linearized conventional and rearranged Langmuir isothermal adsorption models of 236.4 and 186.3 mg.g-1, while those of Kediri pumice were of 218.4 and 210.8 mg.g-1, respectively. The removal efficiency of both adsorbents were >80% at the initial Pb concentration of <100 mg.L-1 and around 50-80% at 100-260 mg.L-1. Both pumices are therefore considered potential to be utilized as an adsorbent for cationic contaminants in solution systems with reliable performances.


NaOH-activated pumice powder; natural adsorbent; rearranged Langmuir model

Full Text:



Abas, S. N. A., Ismail, M. H. S., Kamal, M. L., & Izhar, S. (2013). Adsorption rocess of heavy metals by low-cost adsorbent: A review. World Applied Science Journal, 28(11), 1518–1530. https://doi.org/10.5829/idosi.wasj.2013.28.11.1874

Abidin, Z., Matsue, N., & Henmi, T. (2004). Dissolution mechanism of nano-ball allophane with dilute alkali solution. Clay Science, 12(4), 213–222. https://doi.org/10.11362/jcssjclayscience1960.12.213

Abidin, Z., Matsue, N., & Henmi, T. (2005). Molecular orbital analysis on the dissolution of nano-ball allophane under alkaline condition. Clay Science, 13(1), 1–6. https://doi.org/10.11362/jcssclayscience1960.13.1

Aristantha, F., Hendrawan, A. P., & Asmaranto, R. (2017). Identifikasi karakteristik fisik dan mineralogi material piroklastik hasil erupsi gunung kelud di sungai kali sambong desa pandansari kecamatan ngantang kabupaten malang sebagai alternatif material timbunan. Jurnal Mahasiswa Jurusan Teknik Pengairan, 1(1). Retrieved from http://pengairan.studentjournal.ub.ac.id/index.php/jmtp/article/view/24/23

Bohn, H. L., McNeal, B. L., & O’Connor, G. A. (2001). Soil Chemistry (3rd ed.). Toronto: John Wiley & Sons, Inc.

Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18. https://doi.org/10.1016/j.jcis.2004.04.005

Çifçi, D. İ., & Meriç, S. (2016). A review on pumice for water and wastewater treatment. Desalination and Water Treatment, 57(39), 18131–18143. https://doi.org/10.1080/19443994.2015.1124348

Criscenti, L. J., & Sverjensky, D. A. (1999). The role of electrolyte anions (ClO4-, NO3- and Cl-) in divalent metal (M2+) adsorption on oxide and hydroxide surface in salt solutions. American Journal of Science, 299(10), 828–899. https://doi.org/10.2475/ajs.299.10.828

Dempsey, S. R. (2013). Geochemistry of Volcanic Rocks from the Sunda Arc. Durham University.

Edwards, C. M. ., Menzies, M. A., Thirlwall, M. F., Morris, J. D., Leeman, W. P., & Harmon, R. S. (1994). The transition to potassic alkaline volcanism in island arcs: The Ringgit-Beser Complex, East Java, Indonesia. Journal of Petrology, 35(6), 1557–1595. https://doi.org/10.1093/petrology/35.6.1557

Elsheikh, M. A., Muchaonyerwa, P., Johan, E., Matsue, N., & Henmi, T. (2018). Mutual adsorption of lead and phosphorus onto selected soil clay minerals. Advance in Chemical and Science, 8(2), 67–81. https://doi.org/10.4236/aces.2018.82005

Essington, M. E. (2004). Soil and Water Chemistry: An Integrative Approach. CRC Press LLC.

Foden, J. D. (1979). The petrology of some young volcanic rocks from Lombok and Sumbawa, Lesser Sunda Islands. University of Tasmania.

Fonseca, B., Figueiredo, H., Rodrigues, J., Queiroz, A., & Tavares, T. (2011). Mobility of Cr, Pb, Cd, Cu, and Zn in a loamy sand soil: A comparative study. Geoderma, 164(3–4), 232–237. https://doi.org/10.1016/j.geoderma.2011.06.016

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013

Giles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 3973–3993. https://doi.org/10.1039/JR9600003973

Hamidpour, M., Kalbasi, M., Majid, A., Sharia, Madari, H., & Furrer, G. (2014). Sorption of lead on Iranian bentonite and zeolite: Kinetics and isotherms. Environmental Earth Science, 62(3), 559–568. https://doi.org/10.1007/s12665-010-0547-x

Hasan, R., & Setiabudi, H. (2018). Removal of Pb(II) from aqueous solution using KCC-1: Optimization by response surface methodology (RSM). Journal of King Saud University-Science. https://doi.org/10.1016/j.jksus.2018.10.005

Ismail, A. I. M., El-Shafey, O. ., Amr, M. H. A., & El-Maghraby, M. . (2014). Pumice characteristics and their utilization on the synthesis of mesoporous minerals and on the removal of heavy metals. International Scholarly Research Notice, 9. https://doi.org/10.1155/2014/259379

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

Jonasi, V., Matina, K., & Guyo, U. (2017). Removal of Pb(II) and Cd(II) from aqueous solution using alkaline-modified pumice stone powder (PSP): Equilibrium, kinetic and thermodynamic studies. Turkish Journal of Chemistry, 41, 748–759. https://doi.org/10.3906/kim-1701-40

Kusumaningtyas, M. P., Regina, G. L. D., Ade, L. N. F., Haiyina, H. A., Nura, H. H., & Darminto. (2017). Synthesis of zeolites from Lombok pumice as silica source for ion exchanger. In (pp. 244–247). In The 1st International Basic Science Conference: Towards the extended use of basic science for enhancing health, environment, energy, and biotechnology (pp. 244–247). Jember, Indonesia: University of Jember. Retrieved from https://jurnal.unej.ac.id/index.php/prosiding/article/view/4232

Liu, J., & Wang, X. (2013). Novel silica-based hybrid adsorbents: Lead (II) adsorption isotherms. The Scientific World Journal, 897159, 6. https://doi.org/10.1155/2013/897159

Mills-knapp, S., Traore, K., Ericson, B., Keith, J., Gysi, N., & Caravanos, J. (2012). The World’s Worst Pollution Problems: Assessing Health Risks at Hazardous Waste Sites.

Moradi, M., Kalantary, R. R., Khosravi, T., & Sharafi, K. (2015). Equilibrium isotherms and kinetic studies of lead removal from aqueous solution by pumice powder. Technical Journal of Engineering and Applied Science, 5(1), 69–79.

Paundanan, M., Riani, E., & Anwar, S. (2015). Heavy metals contamination mercury (Hg) and lead (Pb) in water, sediment, and torpedo scad fish (Megalaspis cordyla L) in Palu Bay, Central Sulawesi. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 5(2), 161–168. https://doi.org/10.19081/jpsl.5.2.161

Ponce-Lira, B., Otazo-Sa´nchez, E., Reguera, E., Acevedo-Sandoval, O., Prieto-Garcia, F., & Gonza´lez-Ramı´rez, C. (2017). Lead removal from aqueous solution by basaltic scoria: Adsorption equilibrium and kinetics. International Journal of Environmental Science Technology, 14(6), 1181–1196. https://doi.org/10.1007/s13762-016-1234-6

Pure Earth, & Green Cross Switzerland. (2015). World’s worst pollution problems 2015: The new top six toxic threats priority list for remediation.

Pure Earth, & Green Cross Switzerland. (2016). World’s worst pollution problems 2016: The toxics beneath our feet.

Riza, F., Bambang, A. N., & Kismartini. (2016). Water environment pollution of heavy metals Pb, Cd, and Hg in Jepara Kartini Beach Central Java, Indonesia. Research Journal of Marine Science, 4(1), 1–4.

Şahan, T., & Öztürk, D. (2014). Investigation of Pb (II) adsorption onto pumice samples: Application of optimization method based on fractional factorial design and response surface methodology. Clean Technologies and Environmental Policy, 16(5), 819–831. https://doi.org/10.1007/s10098-013-0673-8

Sekomo, C. B., Rousseau, D. P. L., & Lens, P. N. L. (2012). Use of Gisenyi volcanic rock for adsorptive removal of Cd(II), Cu(II), Pb(II), and Zn(II) from wastewater. Water, Air and Soil Pollution, 223(2), 533–547. https://doi.org/10.1007/s11270-011-0880-z

Sepehr, M. N., Amrane, A., Karimaian, K. A., Zarrabi, M., & Ghaffari, H. R. (2014). Potential of waste pumice and surface modified pumice for hexavalent chromium removal: Characterization, equilibrium, thermodynamic and kinetic study. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 635–647. https://doi.org/10.1016/j.jtice.2013.07.005

Sepehr, M. N., Zarrabi, M., Kazemian, H., Amrane, A., Yaghmaian, K., & Ghaffari, H. R. (2013). Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems. Applied Surface Science, 274, 295–305. https://doi.org/10.1016/j.apsusc.2013.03.042

Shukla, E. A., Matsue, N., Henmi, T., & Johan, E. (2011). Arsenate adsorption mechanism on nano-ball allophane by Langmuir adsorption equation. Environmental Research, Engineering, and Management, 4(58), 5–9. https://doi.org/10.5755./j01.erem.58.4.395

Silva-yumi, J., Escudey, M., Gacitua, M., & Pizarro, C. (2018). Kinetics, adsorption, and desorption of Cd(II) and Cu(II) on natural allophane: Effect of iron oxide coating. Geoderma, 319(2018), 70–79. https://doi.org/10.1016/j.geoderma.2017.12.038

Speight, J. G. (Ed.). (2005). Lange’s Handbook of Chemistry (16th ed.). McGraw-Hill.

Sposito, G. (2008). The Chemistry of Soils (2nd ed.). New York: Oxford University Press.

Tan, K. H. (2011). Principle of Soil Chemistry (4th ed.). Boca Raton: CRC Press Taylor & Francis Group.

Tjahjono, A., & Suwarno, D. (2018). The spatial distribution of heavy metal lead and cadmium pollution and coliform abundance of waters and surface sediment in Demak. Journal of Ecological Engineering, 19(4), 43–54. https://doi.org/10.12911/22998993/89715

UNEP. (2018). Update on the Global Status of Legal Limits on Lead in Paint.

Wang, S., Du, P., Yuan, P., Zhong, X., Liu, Y., Liu, D., & Deng, L. (2018). Changes in the structure and porosity of hollow spherical allophane under alkaline conditions. Applied Clay Science, 166, 242–249. https://doi.org/10.1016/j.clay.2018.09.028

Wheller, G., Varne, R., Foden, J., & Abbott, M. (1987). Geochemistry of quarternary volcanism in the Sunda-Banda Arc, Indonesia, and three-component genesis of island-arc basaltic magmas. Journal of Volcanology and Geothermal Research, 32(1–3), 137–160. https://doi.org/10.1016/0377-0273(87)90041-2

Whitford, D. J., Nicholls, I. A., & Taylor, S. R. (1979). Contributions to mineralogy and petrology spatial variations in the geochemistry of quaternary lavas across the Sunda Arc in Java and Bali. Contribution Mineralogy Petrology, 70(3), 341–356. https://doi.org/10.1007/BF00375361

Zhang, Y., Zhu, C., Liu, F., Yuan, Y., Wu, H., & Li, A. (2019). Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents : A review. Science of the Total Environment, 646, 265–279. https://doi.org/10.1016/j.scitotenv.2018.07.279


  • There are currently no refbacks.