Bioremediation Using Bacillus subtilis and Saccharomyces cerevisiae to Reduce Chromium in Electroplating Liquid Waste

Mardiyono Mardiyono, Sajidan Sajidan, Mohammad Masykuri, Prabang Setyono

Abstract

The electroplating industry produces liquid waste containing a small number of heavy metals but is toxic. Wastewater containing chromium (Cr) absorbed into the soil will affect soil fertility. Waste management is needed so that the abiotic and biotic environment is not poisoned by Cr. Bioremediation using bacterial and fungal microbes are applicable to reduce Cr levels in electroplating liquid waste. The purpose of this research was to investigate the reduction level of Cr in electroplating liquid waste through bioremediation using Bacillus subtilis and Saccharomyces cerevisiae. Laboratory experiments were conducted using variations in microbial concentrations (102.5 cells ml-1 and 105 cells ml-1), variations in microbial types (Bacillus subtilis bacteria, Saccharomyces cerevisiae fungi, and mixtures of both microbes), and variations in incubation time (6, 12, and 24 hours). The initial Cr concentration and the results of the bioremediation process were determined by measuring the absorbance and the Cr levels using Atomic Absorption Spectrophotometry (AAS). Based on experiments, the use of Bacillus subtilis 102.5 cells ml-1 with a 24-hour incubation time reach the highest percentage reduction in Cr (88.96%), followed by 12-hours incubation time (84.73%), and 6-hours incubation time (79.21%). Furthermore, the use of a microbial mixture of Bacillus subtilis and Saccharomyces cerevisiae 102.5 cells ml-1 with 6-hours, 12-hours and 24-hours incubation time was able to reduce the levels of Cr respectively by 77.46%; 80.18% and 83.04%. Next, Saccharomyces cerevisiae 105 cells ml-1 with 6-hours, 12-hours, and 24-hours incubation time was able to reduce levels of Cr in a row by 50.17%; 52.35% and 55.63%. The results of this study indicate that the bioremediation process using the microbial Bacillus subtilis and Saccharomyces cerevisiae is proven to reduce the levels of Cr in the electroplating industry wastewater. The highest reduction results were achieved on the use of 24-hour incubation time and the use of Bacillus subtilis with a concentration of 102.5 cells ml-1 at 88.96%.

Keywords

Bioremediation; Bacillus subtilis; Chromium heavy metal; Electroplating liquid waste; Saccharomyces cerevisiae

Full Text:

PDF

References

Ahemad, M. (2012). Implications of Bacterial Resistance Against Heavy Metals in Bioremediation: A Review. IIOABJ, 3(3), 39–46.

Akhmad, F., Yusran, F. H., Mariana, Z. T., & Badruzsaufari. (2011). Inokulasi bakteri pereduksi kromium heksavalen sebagai upaya bioremediasi lahan pasca tambang. EnviroScienteae, 7, 12–20. https://doi.org/10.20527/es.v7i1.368

Das, M., Nigam, H., Chauhan, S., Pandey, P., Swati, P., Yadav, M., & Tiwari, A. (2015). Microbial chromium degradation: Biological evolution, mitigation and mechanism. Advances in Applied Science Research, 6(5), 6–12.

Focardi, S., Pepi, M., & Focardi, S. E. (2013). Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. In R. Chamy & F. Rosekranz (Eds.), Biodegradation - Life of Science (pp. 321–348). Rijeka, Croatia: InTech. https://doi.org/10.5772/56365

Gayathramma, K., Pavani, K. V, Singh, A. R., & Deepti, S. (2013). Role of Bacillus Subtilis in Bioremediation of Heavy Metals. IJBR, 6(1), 6–11.

Ghani, A. (2011). Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of brassica juncea L. Egyptian Academic Journal of Biological Sciences, H. Botany, 2(1), 9–15. https://doi.org/10.21608/eajbsh.2011.17007

Golbaz, S., Jafari, A. J., Rafiee, M., & Kalantary, R. R. (2014). Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory. Chemical Engineering Journal, 253, 251–257. https://doi.org/10.1016/j.cej.2014.05.074

Hanifa, A. R. D. (2018). Pengolahan limbah elektroplanting Untuk Penurunan TSS, Total Krom, Dan Nikel Dengan teknik Fitoremediasi Sistem SSF-Wetland. Institut Teknologi Nasional Malang.

Hegazi, H. A. (2013). Removal of Heavy Metals from Wastewater Using Agricultural and Industrial Wastes as Adsorbents. HBRC Journal, 9(3), 276–282.

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

Juwarkar, A. A., Misra, R. R., & Sharma, J. K. (2014). Geomicrobiology and Biogeochemistry. (N. Parmar & A. Singh, Eds.) (Vol. 39). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41837-2

Khan, S. U., Islam, D. T., Farooqi, I. H., Ayub, S., & Basheer, F. (2019). Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Safety and Environmental Protection, 122(December 2018), 118–130. https://doi.org/10.1016/j.psep.2018.11.024

Kurniawan, A. (2014). Upaya Penurunan Pencemaran Logam Berat Pb-II Dan Cr-VI Pada Air Lindi (Leachate) Melalui Proses Bioremediasi Dengan Penambahan Pseudomonas aeruginosa dan Bacillus subtilis. Universitas Sebelas Maret.

Makde, K. N., & Hedaoo, M. N. (2018). Application of Electrocoagulation in Wastewater Treatment: A General Review. International Research Journal of Engineering and Technology (IRJET), 5(12), 1567–1572.

Mardiyono, & Samsumaharto, R. A. (2016). Pemanfaatan Pseudomonas flourescens untuk Meminimalisir Logam Berat Cr pada Limbah Cair Industri Elektroplating. Biomedika, 9(1), 60–67. https://doi.org/10.31001/biomedika.v9i1.263

Mohanty, M., & Patra, H. K. (2013). Effect of Ionic and Chelate Assisted Hexavalent Chromium on Mung Bean Seedlings (Vigna radiata L. wilczek. var k-851) During Seedling Growth. Journal of Stress Physiology & Biochemistry, 9(2), 232–241.

Mu, R., Wang, M., Bu, Q., Liu, D., & Zhao, Y. (2018). Improving lead adsorption through chemical modification of wheat straw by lactic acid. IOP Conference Series: Earth and Environmental Science, 108, 022063. https://doi.org/10.1088/1755-1315/108/2/022063

Nurhasni, N., Salimin, Z., & Nurfitriyani, I. (2013). Pengolahan Limbah Industri Elektroplating Dengan Proses Koagulasi Flokulasi. Jurnal Kimia VALENSI, 3(1), 41–48. https://doi.org/10.15408/jkv.v3i1.328.

Peraturan Menteri. (2014a). Permen LH no 15 th 2014 ttg Baku Mutu Air Limbah, (1815).

Peraturan Menteri. (2014b). PP Nomor 101 Tahun 2014 tentang Pengelolaan Limbah B3, 561–565.

Permana, E., Haryati, S., & Bustan, M. D. (2017). Studi Pengaruh Waktu Kontak, Laju Alir, dan Ukuran Packing terhadap Adsorpsi Cr(VI). Chempublish Journal, 2(1), 32–37.

Pramono, A., Rosariastuti, R., Ngadiman, & Irfan, D. P. (2013). Bacterial Cr(VI) Reduction and Its Impact in Bioremediation. Ilmu Lingkungan, 11(2), 120–131.

Priadie, B. (2012). Teknik Bioremidiasi Sebagai Alternatif dalam Upaya Pengendalian Pencemaran Air. Jurnal Ilmu Lingkungan, 10(1), 38–48.

Qin, X. Y., Chai, M. R., Ju, D. Y., & Hamamoto, O. (2018). Investigation of plating wastewater treatment technology for chromium, nickel and copper. IOP Conference Series: Earth and Environmental Science, 191(1), 012006. https://doi.org/10.1088/1755-1315/191/1/012006

Ribeiro, V. R., Fernandes, I. de A. A., Mari, I. P., Stafussa, A. P., Rossetto, R., Maciel, G. M., & Haminiuk, C. W. I. (2019). Bringing together Saccharomyces cerevisiae and bioactive compounds from plants: A new function for a well-known biosorbent. Journal of Functional Foods, 60, 103433. https://doi.org/10.1016/j.jff.2019.103433

Sadyrbaeva, T. Z. (2016). Removal of chromium(VI) from aqueous solutions using a novel hybrid liquid membrane—electrodialysis process. Chemical Engineering and Processing: Process Intensification, 99, 183–191. https://doi.org/10.1016/j.cep.2015.07.011

Sharaf, S. A. A., Gasmeleed, G. A., & Musa, A. E. (2013). Reduction of Hexavalent Chromium from Chrome Shavings. International Journal of Advance Industrial Engineering, 1(1), 24–27.

Tamam, M. H. B. (2016). Faktor yang Mempengaruhi Pertumbuhan Mikroorganisme.

Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369. https://doi.org/10.1016/j.eti.2019.100369

Waluyo, L. (2019). Mikrobiologi Umum. Malang: UMM Press.

Wazeck, J. (2013). Heavy metal extraction from electroplating sludge using Bacillus subtilis and Saccharomyces cerevisiae (Schwermetallgewinnung aus Galvanikschlämmen durch Bacillus subtilis und Saccharomyces cerevisiae). Geologica Saxonica: Journal of Central European Geology, 59, 251–258.

Wolińska, A., Stępniewska, Z., & Włosek, R. (2013). The influence of old leather tannery district on chromium contamination of soils, water, and plants. Natural Science, 5(2), 253–258. https://doi.org/10.4236/ns.2013.52A037

Refbacks

  • There are currently no refbacks.