Actual Evapotranspiration Model Based on the Irrigation Volume of the Maize Fields on Alfisols

Dwi Priyo Ariyanto, Komariah Komariah, Sumani Sumani, Ilham Setiawan

Abstract

Evapotranspiration data are considered important to determine volume and schedule of the irrigation. The purpose of this study is to determine the actual evapotranspiration model based on the volume of the irrigation to obtain an accurate evapotranspiration value on Alfisols with maize plantation. This research is conducted in the experimental field Jumantono subdistrict, Karanganyar regency by the experiment of the maize (Zea mays) on Alfisols. The evapotranspiration model uses the soil correction factor (x) and the irrigation volume (% ETc). The soil correction factor (X) is calculated by linear regression on actual evapotranspiration (ETa) with crop evapotranspiration (ETc). ETc using reference evapotranspiration (ETo) using the Penman-Monteith model. The results showed that ETa was smaller than ETc in all treatments. The models that can be produced in this study are 3 models. All models applied to produce a determination coefficient > 90%, which all models have a positive relationship. The best actual evapotranspiration model was in total model uses ETa = {0.0403 + (0.0085 × Irrigation volume)} × ETc, for daily estimation and total one planting estimation;  weekly estimation using the weekly model using ETa = {0.4428 + (0.0054 ×Irrigation volume)}× ETc. The errors of both models are ± 1%.

Keywords

Evapotranspiration; Irrigation Volume; Maize; Penman-Monteith Model; Soil Correction Factor

Full Text:

PDF

References

Achmad, M. (2011). Buku Ajar Hidrologi Teknik. Makassar, Indonesia: Universitas Hasanuddin.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper No. 56. Rome, Italy: FAO.

Arsyad, S., & Rustiadi, E. (2012). Penyelamatan Tanah, Air, dan Lingkungan (2nd ed.). Jakarta: Yayasan Pustaka Obor.

Direktorat Jenderal Sumberdaya Air. (2013). Kriteria Perencanaan: Perencanaan Jaringan Irigasi. Kementerian Pekerjaan Umum. Jakarta, Indonesia: Kementerian Pekerjaan Umum. 230p.

Doorenbos, J., & Kasaam, A. H. (1979). Yield Response to Water. Rome, Italy: Land and Water Development Division., FAO.

Handoko. (1995). Klimatologi Dasar : Landasan Pemahaman Fisika Atmosfer dan Unsur-unsur Iklim (Second Edi). Jakarta, Indonesia: Dunia Pustaka Jaya.

Holmes, J. W. (1984). Measuring Evapotranspiration By Hydrological Methods. Agricultural Water Management, 8(1–3), 29–40. http://doi.org/10.1016/0378-3774(84)90044-1

Kementerian Pertanian. (2015). Atlas Peta Pengembangan Kawasan Padi Kabupaten Karanganyar, Provinsi Jawa Tengah. Retrieved June 20, 2018, from http://www1.pertanian.go.id/sikp/files/pjku50/CETAK_KARANGANYAR_FINAL.pdf

Li, S., Kang, S., Zhang, L., Zhang, J., Du, T., Tong, L., & Ding, R. (2016). Evaluation of Six Potential Evapotranspiration Models for Estimating Crop Potential and Actual Evapotranspiration in Arid Regions. Journal of Hydrology, 543(October), 450–461. 10.1016/j.jhydrol.2016.10.022

Mastrolili, M., Katerji, N., Rana, G., & Nouna, B. (1998). Daily Actual Evpotranspiration Measured By TDR Technology In Mediterranian Conditions. Agric for Meteorology, 90, 81–89.

Miller, R. W., & Donahue, R. (1990). Soils : An Introduction to Soils and Plant Growth (6th ed.). New Jersey: Prentice Hall.

Muhadjir, F. (1988). Karakteristik Tanaman Jagung. Bogor, Indonesia: Central Research Institute for Food Crops (CRIFC).

Notohadiprawiro. (2006). Rasionalisasi Penggunaan Sumberdaya Air di Indonesia. Retrieved June 21, 2018, from http://blogugm.azureedge.net/wp-content/blogs.dir/2601/files/2006/11/19xx-Rasionalisasi-penggunaan-sumberdaya-air.pdf

Rana, G., & N. Katerji. (2000). Measurement and Estimation of Actual Evapotranspiration in the Field Under Mediterranean Climate. European Journal of Agronomy, 13(2–3), 125–153. 10.1016/S1161-0301(00)00070-8

Ridolfi, L., Odorico, P. D., Laio, F., & Tamea, S. (2008). Coupled Stochastic Dynamics of Water Table and Soil Moisture in Bare Soil Conditions. Water Resources Research, 44, 1–11. 10.1029/2007WR006707

Rizal, F., Alfiansyah, & Rizalihadi, M. (2014). Analisis Perbandingan Kebutuhan Air Irigasi Tanaman Padi Metode Konvensional dengan Metode SRI Organik. Jurnal Teknik Sipil, 3(4), 67–76.

Rosadi, R., Ridwan, Haryono, N., & Istiawati, O. (2006). Pengaruh Defisit Evapotranspirasi Dalam Regulated Deficit Irrigation (RDI) Pada Kedelai (Glycine Max[L.] Merr.). Jurnal Keteknikan Pertanian, 20, 27–34.

Rosegrant, M. W., Cai, X., & Cline, S. A. (2002). Global Water Outlook To 2025: Averting an Impending Crisis. A 2020 Vision for Food, Agriculture, and the Environment Initiative. Washington.

Rosenberg, N. J., Blad, B. L., & Verma, S. B. (1983). Microclimate : The Biological Environment (2nd ed.). New York, USA: John Wiley.

Runtunuwu, E., Syahbuddin, H., & A. Pramudia. (2005). Validation of Evapotranspiration Prediction Model: An Effort to Complete the National Climate Database System. Jurnal Tanah Dan Iklim, (27), 1–10.

Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America, 70, 1569–1578. 10.2136/sssaj2005.0117

Shariot-Ullah, M., Mili, A. B., & M. S. U. Talukder. (2010). Water Productivity of Maize under Deficit Irrigation. Banglades Journal of Agricultural Sciences, 37(1), 7–12.

Soemarto, C. (1987). Hidrologi Teknik. Surabaya, Indonesia: Usaha Nasional.

Sudaryono. (2009). Kontribusi Ilmu Tanah dalam Mendorong Pengembangan Agribisnis Kacang Tanah Di Indonesia. Pengembangan Inovasi Pertanian, 2(4), 258–277.

Usman. (2004). Pengaruh Iklim Terhadap Tanah dan Tanaman. Jakarta. Jakarta: Bumi Aksara.

Willmott, C. J. (1982). Some Comments on the Evaluation of Model Performance. Bulletin American Meteorological Society, 63, 1309–1313.

Refbacks

  • There are currently no refbacks.