Soil Carbon Transitions Supporting Climate Change Mitigation

Kurniatun Hairiah

Abstract

Maintaining and where feasible restoring soil carbon stocks is part of all sustainable development strategies that have a chance of meeting the global commitment of the Paris Agreement to contain global warming within a 1.5oC limit. Active policies to incentivize increased soil carbon storage require under­standing of the drivers of soil carbon decline, as well as the conditions under which soil management leads to an increase. Soil carbon transitions -- shifts from decline to increase of soil carbon stocks -- have been recorded as part of agricultural intensification. Organic inputs supporting soil carbon may primarily depend on roots, rather than aboveground inputs, and thus on the choice of crops, trees, and grasses that make up an agricultural land use system.

Keywords

Carbon Stock; Organic Matter; Soil Management; Tropical Soil

Full Text:

PDF

References

Banwart, S., Black, H., Cai, Z., Gicheru, P., Joosten, H., Victoria, R., Vargas, R. (2014). Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Management, 5(2), 185–192.

Baveye, P., Berthelin, J., Tessier, D., & Lemaire, G. (2017). The “4 per 1000” initiative: A credibility issue for the soil science community? Geoderma, 309, 118–123.

Bayala, J., Sanou, J., Teklehaimanot, Z., Ouedraogo, S. J., Kalinganire, A., Coe, R., & Noordwijk, M. Van. (2015). Agriculture, Ecosystems and Environment Advances in knowledge of processes in soil – tree – crop interactions in parkland systems in the West African Sahel : A review. Agriculture, Ecosystems and Environment, 205, 25–35. http://doi.org/10.1016/j.agee.2015.02.018

Corbeels, M., Cardinael, R., Naudin, K., Guibert, H., & Torquebiau, E. (2018). The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil & Tillage Research. http://doi.org/10.1016/j.still.2018.02.015

Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., … Blair, J. M. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540, 104–108.

Dignac, M., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Klumpp, K. (2017). Increasing soil carbon storage : mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev., 37(2), 14. http://doi.org/10.1007/s13593-017-0421-2

Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land‐use change on soil organic carbon stocks–a meta‐analysis. Global Change Biology, 17(4), 1658–1670.

Hairiah K, Van Noordwijk M, Santoso B, Syekhfani MS. (1992). Biomass production and root distribution of eight trees and their potential for hedgerow inter¬crop¬ping on an ultisol in Lampung. AGRIVITA 15: 54-68

Huang, J., Minasny, B., Mcbratney, A. B., Padarian, J., & Trianta, J. (2018). The location-and scale-specific correlation between temperature and soil carbon sequestration across the globe. Science of The Total Environment, 615, 540–548. http://doi.org/10.1016/j.scitotenv.2017.09.136

Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., & Kramer, M. G. (2017). The Ecology of Soil Carbon : Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419–445.

Khasanah, N., & Noordwijk, M. Van. (2018). Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change, 1–17.

Khasanah, N., van Noordwijk, M., Ningsih, H., & Rahayu, S. (2015). Carbon neutral ? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agriculture, Ecosystems and Environment, 211, 195–206. http://doi.org/10.1016/j.agee.2015.06.009

Melillo, J. M., Frey, S. D., Deangelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358(6359), 101–105.

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., … Field, D. J. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86.

Minasny, B., McBratney, A. B., Hong, S. Y., Sulaeman, Y., Kim, M. S., Zhang, Y. S., … Kyung Hwa Han. (2012). Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30 years. Global Biogeochemical Cycles, 26(3).

Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., … Woomer, P. L. (1997). Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management, 13(s4), 230–244.

Poulton, P., Johnston, J., Macdonald, A., White, R., & Powlson, D. (2018). Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long‐term experiments at Rothamsted Research, United Kingdom. Global Change Biology, 24(6), 2563–2584.

Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., Marin-Spiotta, E. (2018). Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry, 137(3), 297–306.

Saraiva, F. M., Dubeux Jr, J. C. B., Lira, M. de A., de Mello, A. C. L., dos Santos, M. V. F., Cabral, F. de A., & Teixeira, V. I. (2014). Root development and soil carbon stocks of tropical pastures managed under different grazing intensities. Tropical Grassland-Forrajes Tropicales, 2(3), 254–261.

Scharlemann, J., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81–91.

Smith, P., Davies, C., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., van Noordwijk, M. (2012). Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Global Change Biology, 18(7), 2089–2101.

Soussana, J., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., Lal, R. (2017). Soil & Tillage Research Matching policy and science : Rationale for the ‘ 4 per 1000 - soils for food security and climate ’ initiative. Soil & Tillage Research. http://doi.org/10.1016/j.still.2017.12.002

van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K., & Bernoux, M. (1997). Soil carbon in the humid tropical forest zone. Geoderma, 79(1–4), 187–225.

van Noordwijk, M. (2014). Avoided land degradation and enhanced soil carbon storage: is there a role for carbon markets. Soil Carbon: Science, Management and Policy for Multiple Benefits., 71, 360–379.

van Noordwijk, M., Goverse, T., Ballabio, C., Banwart, S. Bhattacharyya, T., Goldhaber, M., Nikolaidis, N., … Noellemeyer, A. (2014). Soil carbon transition curves: reversal of land degradation through management of soil organic matter for multiple benefits. Wallingford, UK: CABI Publishing.

van Noordwijk, M., Matthews, R., Agus, F., Farmer, J., Verchot, L., Hergoualc’h, K., Dewi, S. (2014). Mud, muddle, and models in the knowledge value-chain to action on tropical peatland conservation. Mitigation and Adaptation Strategies for Global Change, 19(6), 887–905.

Wim de Vries. (2017). Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations. Geoderma, 309, 111–112.

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.