Remediation of Chromium Contaminated Soil by Phyto-Bio System (PBS) Application

Retno Rosariastuti, Selly Maisyarah, Sudadi Sudadi, Sri Hartati, Purwanto Purwanto

Abstract

Chromium polluted water was increased as the result of the growth of the industries, due to their industrial waste were most likely contain heavy metals, especially textile industrial waste that was discarded to the rivers. This research aimed to study the removal of chromium levels in soil used the symbiosis between plant and bacteria. Soil sample contained with 4.33 mg kg-1 and the irrigation water sample contained with 1.09 mg l-1 of total chromium. This research design was factorial with Randomized Complete Block Design as the based design There were 3 factors in this study: 1.  inorganic fertilizer (P): P0: without inorganic fertilizer, P1: with inorganic fertilizer; 2. chelator (B):B0: without chelator, B1: with chelator Rhizobium sp I3, B2: with chelator manure; 3. Plant (T): T0 without plant, T1: with plant. Data were analyzed by statistical analysis using ANOVA continued by T-test or Duncan Multiple Range test and correlation test. The result showed that the remediation process reduced chromium levels in soil with the removal effectivity up to 71.90% on the treatment combination of NPK fertilizer+manure+plant while removal effectivity on plant-only treatment was 55.66%. The chromium levels in Fimbristylis globulosa were in the range from 1.82–3.15 μ g-1, it indicated that Fimbristylis globulosa was a feasible plant for bioremediation. Fimbristylis globulosa grew well and has the ability to absorb chromium, especially by combining it with Rhizobium sp I3and the chromium uptake in roots was higher than shoots.

Keywords

Industrial waste; Manure; Phytoremediation; Rhizobium sp I3; Rhizoremediation

Full Text:

PDF

References

Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). Application of Microorganisms in Bioremediation-Review. Journal of Environmental Microbiology, 1(1), 2–9.

Adji, S. S. (2006). Rehabilitasi Tanah Sawah Tercemar Natrium dan Logam Berat Melalui Pencucian Penggunaan Bahan Organik dan Bakteri. Bogor Agricultural University.

Atanassova, L., Velichkova, N., & Teoharov, M. (2012). Heavy Metal Mobility in Soil Under the Application of Sewage Sludge. Bulgarian Journal of Agricultural Science, 18(3), 396–402.

BPS-Statistics of Karanganyar Regency. (2011). Karanganyar dalam Angka 2011 (Karanganyar in Figures 2011). (Integration Preparation and Dicemination Statistic Section, Ed.). Karanganyar, Indonesia: BPS-Statistics of Karanganyar Regency.

Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric Oxide Acts Downstream of Auxin to Trigger Root Ferric-Chelate Reductase Activity in Response to Iron Deficiency in Arabidopsis. Plant Physiology, 154(2), 810–819.

Darini, M. T. (2012). Kajian Jarak Tanam dan Dosis Pupuk NPK Terhadap Sifat Agronomi Tanaman Mendong (Fimbrisqlis globulosa Retz. Kunth) serta Intensitas Kompetisi Gulma. Agro UPY, 4(1), 33–42.

Erinle, K. O., Akande, T. Y., Urhie, J., & Bitire, T. D. (2017). Effect of Manure Compost on Heavy Metal Translocation and Bio-Concentration Factors in Soils from an Old Municipal. New York Science Journal, 10(4), 51–59.

Ferina, P., Rosariastuti, R., & Supriyadi. (2017). The Effectiveness of Mendong Plant (Fimbrystilis globulosa) as a Phytoremediator of Soil Contaminated with Chromium of Industrial Waste. Journal of Degraded and Mining Lands Management, 4(4), 899–905. 10.15243/jdmlm.2017.044.899

Food & Agriculture Organization (FAO). (2003). Heavy Metal Regulations - Faolex Legal Notice No.66/2003. Retrieved May 8, 2018, from faolex.fao.org/docs/pdf/eri42405.pdf

Haynes, R. J., & Mokolobate, M. S. (2001). Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems, 59(1), 47–63.

Hidayati, N. (2013). Mekanisme Fisiologis Tumbuhan Hiperakumulator Logam Berat. Jurnal Teknik Lingkungan, 14(2), 75–82.

Indonesian Ministry of Environment. (2010). Himpunan Peraturan Lingkungan Hidup. Jakarta, Indonesia: Eko Jaya.

Lattanzi, P., Aquilanti, G., Bardelli, F., Iadecola, A., Rosellini, I., Tassi, E., … Petruzzelli, G. (2015). Spectroscopic Evidence of Cr(VI) Reduction in a Contaminated Soil by in Situ Treatment with Whey. Agrochimica, 59(3), 218–230.

Lubis, N. S. (2017). Pengaruh Pemberian Nitrogen dan Fosfor terhadap Berat Kering, Kandungan Nitrogen dan Fosfor Legum Tropis Merambat. Universitas Jambi.

McCauley, A., Jones, C., & Olson-Rutz, K. (2017). Nutrient Management : Soil pH and Organic Matter (Module No.). Montana, USA: Montana State University.

Nachimuthu, G., Velu, V., Malarvizhi, P., Ramasamy, S., & Sellamuthu, K. M. (2007). Effect of Real Time N Management on Biomass Production, Nutrient Uptake and Soil Nutrient Status of Direct Seeded Rice (Oryza sativa L.). American Journal of Plant Physiology, 2(3), 214–220.

Nesic, L., Vasin, J., Belic, M., Ciric, V., Gligorijevic, J., Milunovic, K., & Sekulic, P. (2015). The Colloid Fraction and Cation-Exchange Capacity in the Soils of Vojvodina, Serbia. Ratarstvo i Povrtarstvo, 52(1), 18–23.

Pramono, A., Rosariastuti, R., Ngadiman, & Irfan, D. P. (2012). Peran Rhizobakteri dalam Fitoekstraksi Logam Berat Kromium pada Tanaman Jagung. Ecolab, 6(1), 1–60.

Pramono, A., Rosariastuti, R., Ngadiman, & Irfan, D. P. (2013). Bacterial Cr(VI) Reduction and Its Impact in Bioremediation. Ilmu Lingkungan, 11(2), 120–131.

Rosariastuti, M. R. (2014). Peningkatan Serapan Kromium oleh Tanaman yang Diinokulasi Rhizobakteri. Gajah Mada University.

Sa’ad, N. S., Artanti, R., & Dewi, T. (2011). Phyto-Remediation for Rehabilitation of Agricultural Land Contaminated by Cadmium and Copper. Indonesian Journal of Agriculture, 4(1), 17–21.

Silva, B., Figueiredo, H., Neves, I. C., & Tavares, T. (2008). The Role of pH on Cr(VI) Reduction and Removal by Arthrobacter Viscosus. International Journal of Chemical and Molecular Engineering, 2(7), 70–73.

Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Root Exudates and Their Molecular Interactions with Rhizospheric Microbes. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, Soil and Microbes (Volume 2, pp. 59–77). Switzerland: Springer, Cham.

Takata, Y., Tani, M., Kato, T., & Koike, M. (2011). Effects of Land Use and Long-Term Organic Matter Application on Low-Molecular-Weight Organic Acids in an Andisol. Journal of Soil Science and Environmental Management, 2(10), 292–298.

Tangahu, B. V., Abdullah, S. R. S., Basri, H., Indris, M., Anuar, N., & Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 1–31. 10.1155/2011/939161

Thanh, N. H., Le Ha, T. T., Viet Ha, C., Hung., N. D., Hung, P. Q., Kurosawa, K., & Egashira, K. (2013). Uptake of Pb, Zn, and Cu by roots and shoots of fast growing plants grown in contaminated soil in Vietnam. Journal of Soil Science and Environmental Management, 4(6), 108–115. 10.5897/JSSEM11.009

Zhang, B. Y., Zheng, J. S., & Sharp, R. G. (2010). Phytoremediation in Engineered Wetlands: Mechanisms and Applications. Procedia Environmental Sciences, 2, 1315–1325. 10.1016/j.proenv.2010.10.142

Refbacks

  • There are currently no refbacks.