Local Air and Soil Temperature Modeling Using Himawari 8 Satellite Imagery
Abstract
Keywords
Full Text:
PDFReferences
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., … Yoshida, R. (2016). An Introduction to Himawari-8/9 – Japan's New-Generation Geostationary Meteorological Satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151–183. https://doi.org/10.2151/jmsj.2016-009
Fan, J., McConkey, B., Wang, H., & Janzen, H. (2016). Root distribution by depth for temperate agricultural crops. Field Crops Research, 189, 68–74. https://doi.org/10.1016/J.FCR.2016.02.013
Flores P, F., & Lillo S, M. (2010). Simple Air Temperature Estimation Method from MODIS Satellite Images on a Regional Scale. Chilean Journal of Agricultural Research, 70(3), 436–445. https://doi.org/10.4067/S0718-58392010000300011
Forsythe, N., Hardy, A. J., Fowler, H. J., Blenkinsop, S., Kilsby, C. G., Archer, D. R., … Hashmi, M. Z. (2015). A Detailed Cloud Fraction Climatology of the Upper Indus Basin and Its Implications for Near-Surface Air Temperature. Journal of Climate, 28(9), 3537–3556. https://doi.org/10.1175/JCLI-D-14-00505.1
Geiger, R. (1959). The Climate Near The Ground. Cambridge: Havard University Press.
Jungqvist, G., Oni, S. K., Teutschbein, C., & Futter, M. N. (2014). Effect of Climate Change on Soil Temperature in Swedish Boreal Forests. PLoS ONE, 9(4), e93957. https://doi.org/10.1371/journal.pone.0093957
Kätterer, T., & Andrén, O. (2009). Predicting daily soil temperature profiles in arable soils in cold temperate regions from air temperature and leaf area index. Acta Agriculturae Scandinavica, Section B - Plant Soil Science, 59(1), 77–86. https://doi.org/10.1080/09064710801920321
Liang, L. L., Riveros-Iregui, D. A., Emanuel, R. E., & McGlynn, B. L. (2014). A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions. Journal of Geophysical Research: Atmospheres, 119(2), 407–417. https://doi.org/10.1002/2013JD020597
Menzel, W. P., Tobin, D. C., & Revercomb, H. E. (2016). Infrared Remote Sensing with Meteorological Satellites. Advances In Atomic, Molecular, and Optical Physics, 65, 193–264. https://doi.org/10.1016/BS.AAMOP.2016.04.001
Özkan, U., & Gökbulak, F. (2017). Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. CATENA, 149, 158–166. https://doi.org/10.1016/J.CATENA.2016.09.017
Patkó, I., Szeder, A., & Patkó, C. (2013). Evaluation the Impact Tilt Angle on the Sun Collectors. Energy Procedia, 32, 222–231. https://doi.org/10.1016/J.EGYPRO.2013.05.029
Rahaman, K. R., & Hassan, Q. K. (2017). Quantification of Local Warming Trend: A Remote Sensing-Based Approach. PLOS ONE, 12(1), e0169423. https://doi.org/10.1371/journal.pone.0169423
Sadeghi, M., Babaeian, E., Tuller, M., & Jones, S. B. (2017). The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment, 198, 52–68. https://doi.org/10.1016/J.RSE.2017.05.041
Song, Y., Zhou, D., Zhang, H., Li, G., Jin, Y., & Li, Q. (2013). Effects of vegetation height and density on soil temperature variations. Chinese Science Bulletin, 58(8), 907–912. https://doi.org/10.1007/s11434-012-5596-y
Yener, D., Ozgener, O., & Ozgener, L. (2017). Prediction of soil temperatures for shallow geothermal applications in Turkey. Renewable and Sustainable Energy Reviews, 70, 71–77. https://doi.org/10.1016/J.RSER.2016.11.065
Refbacks
- There are currently no refbacks.