Characteristics of Biochars from Plant Biomass Wastes at Low-Temperature Pyrolysis

Liska Mutiara Septiana, Gunawan Djajakirana, Darmawan Darmawan

Abstract

The effects of biochar as soil ameliorants depend on their characteristics that are influenced by the variation in biomass origin and pyrolysis process. In this context, the objective of this study was to determine the chemical and physical characteristics of seven biochar derived from different biomass wastes - rice husk, corn cob, empty oil palm fruit bunch, bagasse, and sawdust of albazia (Albizzia falcataria), maesopsis (Maesopsis eminii), and mahogany (Swietenia macrophylla) at two low-pyrolysis temperatures (250 and 350 oC). The results showed that the percentage of biochar yield decreased at higher temperature level. However, the increased thermal decomposition of plant biomass wastes (at 350 oC) resulted in higher pH, as well as ash, C, N content of the biochar; but it did not significantly affect nutrient availability. Biochar from wood waste had more C and Ca content. Biochar from rice husk produced the highest ash content, while biochar from empty oil palm fruit bunch yielded the highest pH value, and possessed more nutrients than all the others.  Increasing pyrolysis temperature from 250 to 350 oC resulted in greater biochar surface area and total pore volume but produced smaller average pore radius.

Keywords

ameliorant; pyrolysis process; thermal decomposition

Full Text:

PDF

References

Amonette, J. E., & Joseph, S. (2012). Characteristics of biochar: Microchemical properties. In Biochar for Environmental Management: Science and Technology (pp. 33–52). London: Earthscan. http://doi.org/10.4324/9781849770552

BPS. (2017). Data Badan Pusat Statistik Jakarta 2013. Retrieved March 8, 2017, from https://www.bps.go.id/site/resultTab

BSN. (1995). SNI 06-3730-1995: Arang Aktif Teknis. Jakarta: Badan Standarisasi Nasional (BSN).

Cetin, E., Moghtaderi, B., Gupta, R., & Wall, T. F. (2004). Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 83(16), 2139–2150. http://doi.org/10.1016/j.fuel.2004.05.008

Downie, A., Crosky, A., & Munroe, P. (2009). Physical Properties of Biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (1st ed., pp. 13–32). London: Earthscan.

Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. http://doi.org/10.1016/j.biortech.2012.03.022

Fengel, D., & Wegener, G. (1989). Wood: chemistry, ultrastructure, reactions. Wood: chemistry, ultrastructure, reactions. New York: Walter de Gruyter. http://doi.org/10.1007/BF02608943

Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The “Terra Preta” phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88(1), 37–41. http://doi.org/10.1007/s001140000193

Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biology and Fertility of Soils. http://doi.org/10.1007/s00374-002-0466-4

González, M. T., Molina-Sabio, M., & Rodríguez-Reinoso, F. (1994). Steam activation of olive stone chars, development of porosity. Carbon, 32(8), 1407–1413. http://doi.org/10.1016/0008-6223(94)90133-3

Gurning, N., Tetuko, A. P., & Sebayang, P. (2013). Pembuatan Beton Serat Tandan Kosong Kelapa Sawit. TELAAH Jurnal Ilmu Pengetahuan Dan Teknologi, 31(1), 13–20.

Hidajati, N. (2006). Pengolahan Tongkol Jagung sebagai Bahan Pembuatan Furfural. Jurnal Ilmu Dasar, 8(1), 45–53.

Idris, J., Shirai, Y., Ando, Y., Ali, A. A. M., Othman, M. R., Ibrahim, I., & Hassan, M. A. (2014). Production of Biochar with High Mineral Content from Oil Palm Biomass. The Malaysian Journal of Analytical Sciences, 18(3), 700–704.

J. W. Gaskin, C. Steiner, K. Harris, K. C. Das, & B. Bibens. (2008). Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use. Transactions of the ASABE, 51(6), 2061–2069. http://doi.org/10.13031/2013.25409

Karlinasari, L., Rahmawati, M., & Mardikanto, T. (2010). Pengaruh pengawetan kayu terhadap kecepatan gelombang ultrasonik dan sifat mekanis lentur serta tekan sejajar serat kayu Acacia Mangium Willd. Jurnal Teknik Sipil, 17(3), 163–170. Retrieved from http://journals.itb.ac.id/index.php/jts/article/view/2775/1376

Khan, Z., Yusup, S., & Ahmad, M. M. (2011). Thermogravimetric analysis of palm oil wastes decomposition. In 2011 IEEE 1st Conference on Clean Energy and Technology, CET 2011 (pp. 205–208). http://doi.org/10.1109/CET.2011.6041464

Law, K. N., Daud, W. R. W., & Ghazali, A. (2007). Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). BioResources, 2(3), 351–362. http://doi.org/10.15376/biores.2.3.351-362

Leeper, G. W., & Uren, N. C. (1993). The Nitrogen Cycle. In Soil science : an introduction (5th ed., pp. 166–168). Melbourne: Melbourne University Press.

Lehmann, J., Dirse, K., German, L., Mccann, J., Martins, G. C., & Moreira, A. (2003). Soil fertility and production potential. In J. Lehmann, D. C. Kern, B. Glaser, & W. I. Wodos (Eds.), Amazonian Dark Earths: Origin Properties Management (pp. 105–124). Dordrecht: Kluwer Academic Publishers. http://doi.org/10.1007/1-4020-2597-1_6

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management : An introduction. In Biochar for Environmental Management - Science and Technology (Vol. 1, pp. 1–12). London: Earthscan. http://doi.org/10.1016/j.forpol.2009.07.001

Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., … Wirick, S. (2008). Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta, 72(24), 6069–6078. http://doi.org/10.1016/j.gca.2008.09.028

Maftu’ah, E., & Nursyamsi, D. (2015). Potensi berbagai bahan organik rawa sebagai sumber biochar. PROS SEM NAS MASY BIODIV INDON, 1(4), 776–781. http://doi.org/10.13057/psnmbi/m010417

Martawijaya, A., Kartasudjana, I., Mandang, Y. I., Prawira, S. A., & Kadir, K. (1989). Atlas Kayu Jilid II. Bogor: Badan Penelitian dan pengembangan kehutanan, Departemen Kehutanan.

Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23–28. http://doi.org/10.1016/j.indcrop.2005.03.001

Menlhk. (2016). Statistik kementerian lingkungan hidup dan Kehutanan 2015. Jakarta: Kementrian Lingkungan Hidup dan Kehutanan. Retrieved from http://www.menlhk.go.id/downlot.php?file=Statistik_KLHK_tahun_2015.pdf

Mirwan, M. (2005). DAUR ULANG LIMBAH HASIL INDUSTRI GULA (AMPAS TEBU / BAGASSE) DENGAN PROSES KARBONISASI SEBAGAI ARANG AKTIF. JURNAL REKAYASA PERENCANAAN, 1(3).

Neves, E. G., Petersen, J. B., Bartone, R. N., & Da Silva, C. A. (2003). Historical and Socio-cultural Origins of Amazonian Dark Earth. In J. Lehmann, D. C. Kern, B. Glaser, & W. Wodos, I. (Eds.), Amazonian Dark Earths: Origin Properties Management (pp. 29–50). Dordrecht: Kluwer Academic Publishers. http://doi.org/10.1007/1-4020-2597-1

Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., … Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3(843), 195–206. http://doi.org/Novak, J., Lima, I., Xing, B., Gaskin, J., Steiner, C., Das, K., … Schomberg, H. Characterization of Designer Biochar Produced at Different Temperatures and Their Effects on a Loamy Sand. , 3 Annals of Environmental Science (2009).

Patabang, D. (2012). Karakteristik Termal Briket Arang Sekam Padi dengan Variasi Bahan Perekat. Jurusan Mekanikal, 3(2), 1–8.

Richana, N., Irawadi, T. T., Nur, M. A., Sailah, I., Syamsu, K., & Arkenan, Y. (2007). Ekstraksi Xilan dari Tongkol Jagung. J. Pascapanen, 4(1), 38–43.

Rondon, M. A., Lehmann, J., Ramirez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699–708. http://doi.org/10.1007/s00374-006-0152-z

Schmidt, M. W. I., Skjemstad, J. O., & Jager, C. (2002). Carbon isotope geochemistry and nanomorphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochemical Cycles, 16(4). http://doi.org/Artn 1123rDoi 10.1129/2002gb001939

Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report Series, (February), 64. http://doi.org/10.1139/Z03-132

Sricharoenchaikul, V., Pechyen, C., Aht-Ong, D., & Atong, D. (2008). Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy and Fuels, 22(1), 31–37. http://doi.org/10.1021/ef700285u

Sullivan, D. M., & Miller, R. O. (2001). Compost Quality Attributes, Measurement, and Variability. In P. J. Stofflla & B. A. Kahn (Eds.), Compost Utilization Horticultural Cropping Systems (pp. 95–117). USA: Lewis Publisher, CRC Press LLC.

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology. http://doi.org/10.1016/S0960-8524(01)00212-7

Yang, H., Yan, R., Chin, T., Liang, D. T., Chen, H., & Zheng, C. (2004). Thermogravimetric Analysis−Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis. Energy & Fuels, 18(6), 1814–1821. http://doi.org/10.1021/ef030193m

Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. http://doi.org/10.1016/j.biortech.2010.11.018

Refbacks

  • There are currently no refbacks.