The relationship between soil properties in pedogenesis dynamics: A study of pedons on slopes and basins

Henly Yulina, Mahfud Arifin, Rina Devnita, Muhamad Rahman Djuwansah, Fatharani Raidasari

Abstract

Soil formation and weathering are essential processes influencing natural fertility, yet the combined role of particle size distribution, texture, and organic carbon content at the profile scale remains understudied. Earlier research has focused chiefly on soil properties at the landform or regional scale, without examining interhorizon variations, leading to a limited understanding of their interactions in pedogenesis under different environments. This study compared the physical and chemical characteristics of soils in two contrasting pedons, Jatinangor (slope) and Tanjungsari (depression), both located in Sumedang Regency, West Java, Indonesia, with similar soil-forming factors. A descriptive-comparative method was employed using horizon-based sampling, laboratory analysis, and Principal Component Analysis (PCA) to reveal relationships and dominant factors. Results indicated that clay fractions dominated the JTN (Jatinangor) pedon with a clay texture due to intensive weathering under well-drained conditions. In contrast, the TJN (Tanjungsari) pedon was dominated by silt fractions resulting from fine material deposition under waterlogged conditions. Organic carbon content was lower in JTN due to leaching on slopes, whereas higher accumulation occurred in TJN due to depression settings. PCA identified sand fraction as the main discriminating factor, while fine fractions (silt and clay) were positively associated with organic carbon. These findings highlight that integrated analysis of these variables at the pedon scale provides a sensitive indicator of pedogenesis, weathering, and soil fertility.

Keywords

Principal component analysis; Soil characteristics; Soil weathering; Landform

Full Text:

PDF

References

Alamu, R., & Dada, O. J. (2025, 03/31). Sedimentary Basins and Hydrocarbon Accumulation. https://www.researchgate.net/publication/390349023

Amorim, H. C. S., Hurtarte, L. C. C., Souza, I. F., & Zinn, Y. L. (2022). C:N ratios of bulk soils and particle-size fractions: Global trends and major drivers. Geoderma, 425, 116026. https://doi.org/10.1016/j.geoderma.2022.116026

Ao, L., Wu, Y., Xu, Q., Huang, G., Zheng, J., Dai, J., . . . Chen, H. (2024). Subsurface flow aggravates the soil erosion on steep slopes in karst post-mining areas. Journal of Hydrology: Regional Studies, 51, 101667. https://doi.org/10.1016/j.ejrh.2024.101667

Ashida, K., Watanabe, T., Urayama, S., Hartono, A., Kilasara, M., Ze, A. D. M., . . . Funakawa, S. (2021). Quantitative relationship between organic carbon and geochemical properties in tropical surface and subsurface soils. Biogeochemistry, 155(1), 77-95. https://www.jstor.org/stable/48760929

Assefa, F., Elias, E., Soromessa, T., & Ayele, G. T. (2020). Effect of Changes in Land-Use Management Practices on Soil Physicochemical Properties in Kabe Watershed, Ethiopia. Air, Soil and Water Research, 13, 1178622120939587. https://doi.org/10.1177/1178622120939587

Bayat, H., Rastgo, M., Mansouri Zadeh, M., & Vereecken, H. (2015). Particle size distribution models, their characteristics and fitting capability. Journal of Hydrology, 529, 872-889. https://doi.org/10.1016/j.jhydrol.2015.08.067

Bhatt, K., Agrawal, S. B., Dwivedi, B. S., Gupta, D., Priya, S., Malviya, P., & Ray, M. A. (2024). Comparative Analysis of Soil Physico-Chemical Properties Across Different Land-Use Systems. International Journal of Plant & Soil Science, 36(9), 284–292. https://doi.org/10.9734/ijpss/2024/v36i94978

Cai, A., Feng, W., Zhang, W., & Xu, M. (2016). Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. Journal of Environmental Management, 172, 2-9. https://doi.org/10.1016/j.jenvman.2016.02.009

Churchman, G. J. (2018). Game Changer in Soil Science. Functional role of clay minerals in soil. Journal of Plant Nutrition and Soil Science, 181(1), 99-103. https://doi.org/10.1002/jpln.201700605

Darder, M. L., Paz-González, A., García-Tomillo, A., Lado, M., & Wilson, M. G. (2021). Comparing multifractal characteristics of soil particle size distributions calculated by Mie and Fraunhofer models from laser diffraction measurements. Applied Mathematical Modelling, 94, 36-48. https://doi.org/10.1016/j.apm.2020.12.044

Dewangan, S. K., Kashyap, N., Tigga, D., & Tirkey, N. (2024). The role of physico-chemical properties in soil functionality: a literature review. EPRA International Journal of Research & Development, 9(12), 167-173. https://eprajournals.com/IJSR/article/14575

Dhruw, S., Patil, N., Naitam, R., Anurag, & Kumar, N. (2022). Characterization and classification of soils under different landforms using RS and GIS: A case study of Sawangi watershed of Yavatmal district, Maharashtra. The Pharma Innovation Journal, 11(Special Issue 7), 752-761. https://www.thepharmajournal.com/special-issue?year=2022&vol=11&issue=7S&ArticleId=13787

Djuri. (1995). Peta Geologi Lembar Arjawinangun, Jawa. Pusat Penelitian dan Pengembangan Geologi (Geological Research and Development Centre).

Doetterl, S., Berhe, A. A., Heckman, K., Lawrence, C., Schnecker, J., Vargas, R., . . . Wagai, R. (2025). A landscape-scale view of soil organic matter dynamics. Nature Reviews Earth & Environment, 6(1), 67-81. https://doi.org/10.1038/s43017-024-00621-2

Du, M., Minasny, B., & Rabbi, S. M. F. (2024). Carbon to nitrogen stoichiometry of organic amendments influences the improvement of aggregate stability of a cropping vertisol. Soil Use and Management, 40(2), e13087. https://doi.org/10.1111/sum.13087

Du, W., Wang, W., Liu, R., Wang, Y., Zhang, Y., Zhao, J., . . . Sun, Y. (2022). Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of The Total Environment, 802, 149695. https://doi.org/10.1016/j.scitotenv.2021.149695

Eger, A., Koele, N., Caspari, T., Poggio, M., Kumar, K., & Burge, O. R. (2021). Quantifying the Importance of Soil-Forming Factors Using Multivariate Soil Data at Landscape Scale. Journal of Geophysical Research: Earth Surface, 126(8), e2021JF006198. https://doi.org/10.1029/2021JF006198

Ewunetu, T., Selassie, Y. G., Molla, E., Admase, H., & Gezahegn, A. (2025). Soil properties under different land uses and slope gradients: Implications for sustainable land management in the Tach Karnuary watershed, Northwestern Ethiopia [Original Research]. Frontiers in Environmental Science, Volume 13 - 2025. https://doi.org/10.3389/fenvs.2025.1518068

Feng, S., Zhang, Y., & Wu, B. (2025). Biomechanical influence of organic matter enrichment and sedimentary environment in the Ordos Basin. Molecular & Cellular Biomechanics, 22(4), 1251. https://doi.org/10.62617/mcb1251

Findlay, S. E. G. (2021). Chapter 4 - Organic Matter Decomposition. In K. C. Weathers, D. L. Strayer, & G. E. Likens (Eds.), Fundamentals of Ecosystem Science (Second Edition) (pp. 81-102). Academic Press. https://doi.org/10.1016/B978-0-12-812762-9.00004-6

Franzluebbers, A. J. (2024). Texture and organic matter associations with soil functional properties in crop and conservation land uses in North Carolina. Soil Science Society of America Journal, 88(2), 449-464. https://doi.org/10.1002/saj2.20620

Gonçalves, D. R. P., Sá, J. C. d. M., Mishra, U., Cerri, C. E. P., Ferreira, L. A., & Furlan, F. J. F. (2017). Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma, 286, 88-97. https://doi.org/10.1016/j.geoderma.2016.10.021

Habibi, L. N., Komariah, K., Ariyanto, D. P., Syamsiyah, J., & Tanaka, T. S. T. (2019). Estimation of Soil Organic Matter on Paddy Field using Remote Sensing Method. Sains Tanah Journal of Soil Science and Agroclimatology, 16(2), 10. https://doi.org/10.20961/stjssa.v16i2.35395

Hartemink, A. E., Zhang, Y., Bockheim, J. G., Curi, N., Silva, S. H. G., Grauer-Gray, J., . . . Krasilnikov, P. (2020). Chapter Three - Soil horizon variation: A review. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 160, pp. 125-185). Academic Press. https://doi.org/10.1016/bs.agron.2019.10.003

Hassink, J. (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191(1), 77-87. https://doi.org/10.1023/A:1004213929699

Huang, X., Zhang, Z., Zhou, Y., Wang, X., Zhang, J., & Zhou, X. (2021). Characteristics of soil organic carbon under different karst landforms. Carbonates and Evaporites, 36(3), 40. https://doi.org/10.1007/s13146-021-00711-y

Liang, L., Engling, G., Cheng, Y., Zhang, X., Sun, J., Xu, W., . . . Ma, Q. (2019). Influence of High Relative Humidity on Secondary Organic Carbon: Observations at a Background Site in East China. Journal of Meteorological Research, 33(5), 905-913. https://doi.org/10.1007/s13351-019-8202-2

Liu, X., Yang, R., Zhao, J., Xiao, D., He, X., Zhang, W., . . . Chen, H. (2024). Effects of Biological Nitrogen Fixation and Nitrogen Deposition on Soil Microbial Communities in Karst Grassland Ecosystems. Microorganisms, 12(12), 2429. https://www.mdpi.com/2076-2607/12/12/2429

Matus, F. J. (2021). Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis. Scientific Reports, 11(1), 6438. https://doi.org/10.1038/s41598-021-84821-6

Mishra, R., & Singh, D. (2025). Role of Soil Texture and Structure in Water Retention and Crop Productivity. International Journal of Creative Research Thoughts, 13, 328-335. https://ijcrt.org/papers/IJCRT2506384.pdf

Mourya, K. K., Saikia, U. S., Hota, S., Ray, P., Jena, R. K., Ramachandran, S., . . . Ray, S. K. (2021). Effect of Landform on some Physical and Chemical Properties of Soil under Rice cultivation in North East Region of India. Indian Journal of Hill Farming, 34, 225-229. https://www.researchgate.net/publication/360783295

Mozaffari, H., Moosavi, A. A., & Dematte, J. A. M. (2022). Estimating particle-size distribution from limited soil texture data: Introducing two new methods. Biosystems Engineering, 216, 198-217. https://doi.org/10.1016/j.biosystemseng.2022.02.007

Mustafa, A., Minggang, X., Ali Shah, S. A., Abrar, M. M., Nan, S., Baoren, W., . . . Núñez-Delgado, A. (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management, 270, 110894. https://doi.org/10.1016/j.jenvman.2020.110894

Okebalama, C. B., Onah, A. C., & Awaogu, C. E. (2025). Effect of Slope Gradient on Soil Physiochemical Fertility Indices across Two Distinct Depth Layers in Horticultural Farm at Ibeku Opi-Agu, Nsukka, Nigeria. Journal of Applied Sciences and Environmental Management, 29(4), 1245-1253. https://www.ajol.info/index.php/jasem/article/view/293748

Oliveira Filho, J. d. S., de Oliveira Lopes, R., de Oliveira Araújo, M., Silva Magalhães, M., Dayson de Sousa Vasconcelos, M., Rayssa Leite Lima, A., . . . Gervasio Pereira, M. (2022). How does increasing humidity in the environment affect soil carbon and nitrogen stocks and the C/N ratio in tropical drylands? Evidence from northeastern Brazil. CATENA, 213, 106208. https://doi.org/10.1016/j.catena.2022.106208

Osman, K. T. (2018a). Soils on Steep Slopes. In Management of Soil Problems (pp. 185-217). Springer International Publishing. https://doi.org/10.1007/978-3-319-75527-4_8

Osman, K. T. (2018b). Soils with Drainage Limitations. In Management of Soil Problems (pp. 83-116). Springer International Publishing. https://doi.org/10.1007/978-3-319-75527-4_5

Pengphorm, P., Thongrom, S., Daengngam, C., Duangpan, S., Hussain, T., & Boonrat, P. (2024). Optimal-Band Analysis for Chlorophyll Quantification in Rice Leaves Using a Custom Hyperspectral Imaging System. Plants, 13(2), 259. https://www.mdpi.com/2223-7747/13/2/259

Phayo, A. (2023). A Comprehensive Review of Factors Influencing Soil Health and Nutrient Dynamics. International Research Journal of Agricultural Science and Soil Science, 12(4), 1-3. https://www.interesjournals.org/abstract/a-comprehensive-review-of-factors-influencing-soil-health-and-nutrient-dynamics-100203.html

Pitta-Osses, N., Centeri, C., Fehér, Á., & Katona, K. (2022). Effect of Wild Boar (Sus scrofa) Rooting on Soil Characteristics in a Deciduous Forest Affected by Sedimentation. Forests, 13(8), 1234. https://www.mdpi.com/1999-4907/13/8/1234

Polakowski, C., Ryżak, M., Sochan, A., Beczek, M., Mazur, R., & Bieganowski, A. (2021). Particle Size Distribution of Various Soil Materials Measured by Laser Diffraction—The Problem of Reproducibility. Minerals, 11(5), 465. https://www.mdpi.com/2075-163X/11/5/465

Qiao, J., Zhu, Y., Jia, X., & Shao, M. a. (2021). Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China. Soil and Tillage Research, 205, 104786. https://doi.org/10.1016/j.still.2020.104786

Rahman, A., & Amin, M. G. M. (2023). Soil hydraulic properties and field-scale hydrology as affected by land-management options [Bulk density; Hydrological functioning; HYDRUS-1D; Plow pan; Runoff]. 2023, 20(1), 16. https://doi.org/10.20961/stjssa.v20i1.70504

Ratnayake, R. R., Roshanthan, T., Gnanavelrajah, N., & Karunaratne, S. B. (2019). Organic Carbon Fractions, Aggregate Stability, and Available Nutrients in Soil and Their Interrelationships in Tropical Cropping Systems: A Case Study. Eurasian Soil Science, 52(12), 1542-1554. https://doi.org/10.1134/S1064229319120123

Ray, M. A., Priya, S., Bhatt, K., & Kumar, P. (2023). Soil Degradation and Soil Erosion. In S. Sharma, N. Khardia, & H. Kumawat (Eds.), Soil Health: Restoration and Management (pp. 15-25). https://www.researchgate.net/publication/375963588

Ren, R., Xia, J., Zhang, Y., Zhang, T., Liu, X., & Zhang, S. (2019). Soil Particle-Size Distribution and Soil Infiltration Characteristics of Different Vegetation Communities in a Typical Mountainous Region of China [journal article]. Polish Journal of Environmental Studies, 28(6), 4319-4329. https://doi.org/10.15244/pjoes/95030

Richer-de-Forges, A. C., Arrouays, D., Chen, S., Román Dobarco, M., Libohova, Z., Roudier, P., . . . Bourennane, H. (2022). Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. CATENA, 213, 106155. https://doi.org/10.1016/j.catena.2022.106155

Rodríguez-Lado, L., & Lado, M. (2017). Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). Geoderma, 287, 147-156. https://doi.org/10.1016/j.geoderma.2016.08.005

Sachan, R., Singh, K. K., Tiwari, T., Mishra, A., & Patel, V. K. (2023). Soil Alchemy: Transforming Rocks into Fertile Earth through Weathering. In V. K. Patel, S. Gosh, H. Tiwari, Samiksha, & R. Sachan (Eds.), Emerging Trends in Agricultural Sciences (pp. 121-138). P.K. Publishers & Distributors Delhi - 110053 (India). https://www.researchgate.net/publication/374144397

Salem, N., & Hussein, S. (2019). Data dimensional reduction and principal components analysis. Procedia Computer Science, 163, 292-299. https://doi.org/10.1016/j.procs.2019.12.111

Satyanaga, A., Rahardjo, H., Zhai, Q., Moon, S.-W., & Kim, J. (2024). Modelling Particle-Size Distribution and Estimation of Soil–water Characteristic Curve utilizing Modified Lognormal Distribution function. Geotechnical and Geological Engineering, 42(3), 1639-1657. https://doi.org/10.1007/s10706-023-02638-8

Shete, P. P., Deshmukh, R. R., & Kayte, J. N. (2019). Determination of soil texture distribution (clay, sand and silt) by using spectral measurement: A review. Journal of Emerging Technologies and Innovative Research, 6(2), 625-629. https://www.researchgate.net/publication/331550289

Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). United States Department of Agriculture Natural Resources Conservation Service. https://soildistrict.org/wp-content/uploads/2022/01/2014_Keys_to_Soil_Taxonomy.pdf

Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. I. (2020). A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils [Original Research]. Frontiers in Forests and Global Change, Volume 3 - 2020. https://doi.org/10.3389/ffgc.2020.00098

Souza, T. (2025). Principal Component Analysis (PCA). In Advanced Statistical Analysis for Soil Scientists (pp. 43-56). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-88161-9_4

Sun, Z.-X., Jiang, Y.-Y., Wang, Q.-B., & Owens, P. R. (2018). A fractal evaluation of particle size distributions in an eolian loess-paleosol sequence and the linkage with pedogenesis. CATENA, 165, 80-91. https://doi.org/10.1016/j.catena.2018.01.030

Tunçay, T., & Dengiz, O. (2016). Chemical weathering rates and geochemical-mineralogical characteristics of soils developed on heterogeneous parent material and toposequence. Carpathian Journal of Earth and Environmental Sciences, 11(2), 583-598. https://www.researchgate.net/publication/308453133

Udom, B., Ogunwole, J., & Wokocha, C. (2021). Aggregate characteristics and aggregate-associated soil organic carbon and carbohydrates of soils under contrasting tree land use. Sains Tanah Journal of Soil Science and Agroclimatology, 18(2), 10. https://doi.org/10.20961/stjssa.v18i2.53615

van der Meij, W. M., Temme, A. J. A. M., Wallinga, J., & Sommer, M. (2020). Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns. SOIL, 6(2), 337-358. https://doi.org/10.5194/soil-6-337-2020

Védère, C., Lebrun, M., Honvault, N., Aubertin, M.-L., Girardin, C., Garnier, P., . . . Rumpel, C. (2022). How does soil water status influence the fate of soil organic matter? A review of processes across scales. Earth-Science Reviews, 234, 104214. https://doi.org/10.1016/j.earscirev.2022.104214

Wang, J., Li, W., Mu, M., Chen, J., Li, Y., Liu, H., & Su, Q. (2023). Particle size composition characteristics of weathered debris from grey–green slate under the action of freeze–thaw and dry–wet cycles. Scientific Reports, 13(1), 1421. https://doi.org/10.1038/s41598-023-27888-7

Wang, J., Liu, L., Wang, X., Yang, S., Zhang, B., Li, P., . . . Liu, W. (2017). High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape. Functional Ecology, 31(8), 1659-1668. https://doi.org/10.1111/1365-2435.12854

Wang, R., Tang, C., Wang, Y., & Li, F. (2024). Analysis of Soil Properties Under Different Landforms and Vegetation in Liangucheng National Reserve in Minqin, China. In Y. Zeng & S. Wang, Environmental Science and Technology: Sustainable Development II Cham. https://doi.org/10.1007/978-3-031-54684-6_7

Wang, X., Jin, Z., Zhao, J., Zhu, Y., Hu, Z., Liu, G., . . . Shi, S. (2020). Depositional environment and organic matter accumulation of Lower Jurassic nonmarine fine-grained deposits in the Yuanba Area, Sichuan Basin, SW China. Marine and Petroleum Geology, 116, 104352. https://doi.org/10.1016/j.marpetgeo.2020.104352

Wang, Y., He, Y., Zhan, J., & Li, Z. (2022). Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension. Scientific Reports, 12(1), 10960. https://doi.org/10.1038/s41598-022-15141-6

Wang, Z., Hasi, E., Han, X., & Qingda, M. (2024). Fractal characterization of soil particle size distribution under different land use patterns on the north slope of Wula Mountain in China. Journal of Soils and Sediments, 24(3), 1148-1164. https://doi.org/10.1007/s11368-024-03722-z

Watanabe, T., Hasenaka, Y., Hartono, A., Sabiham, S., Nakao, A., & Funakawa, S. (2017). Parent Materials and Climate Control Secondary Mineral Distributions in Soils of Kalimantan, Indonesia. Soil Science Society of America Journal, 81(1), 124-137. https://doi.org/10.2136/sssaj2016.08.0263

Wilson, M. J. (2019). The importance of parent material in soil classification: A review in a historical context. CATENA, 182, 104131. https://doi.org/10.1016/j.catena.2019.104131

Yan, F., Tuller, M., de Jonge, L. W., Moldrup, P., & Arthur, E. (2023). Specific surface area of soils with different clay mineralogy can be estimated from a single hygroscopic water content. Geoderma, 438, 116614. https://doi.org/10.1016/j.geoderma.2023.116614

Yost, J. L., & Hartemink, A. E. (2019). Chapter Four - Soil organic carbon in sandy soils: A review. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 158, pp. 217-310). Academic Press. https://doi.org/10.1016/bs.agron.2019.07.004

Zhang, X. C., & Wang, Z. L. (2017). Interrill soil erosion processes on steep slopes. Journal of Hydrology, 548, 652-664. https://doi.org/10.1016/j.jhydrol.2017.03.046

Refbacks

  • There are currently no refbacks.