The culture inoculation method could influence heavy metals levels in soil, plant uptake, and biomass: a meta-analysis
Abstract
Keywords
Full Text:
PDFReferences
Aalipour, H., Nikbakht, A., & Etemadi, N. (2021). Physiological response of Arizona cypress to Cd-contaminated soil inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Rhizosphere, 18, 100354. https://doi.org/10.1016/j.rhisph.2021.100354
Afonne, O. J., & Ifediba, E. C. (2020). Heavy metals risks in plant foods – need to step up precautionary measures. Current Opinion in Toxicology, 22, 1-6. https://doi.org/10.1016/j.cotox.2019.12.006
Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12. https://doi.org/10.1016/j.arabjc.2014.11.020
Al-Maliki, S., & Al-Shamary, A. (2022). Vital evidence for arbuscular mycorrhizal fungi, bacteria and cattail plant to remove Pb-Cd heavy metals from contaminated soils. Acta Ecologica Sinica, 42(4), 392-397. https://doi.org/10.1016/j.chnaes.2022.05.008
Ali, M. M. M., Hossain, D., Imran, A., Khan, M. S., Begum, M., & Osman, M. H. (2021). Environmental Pollution with Heavy Metals: A Public Health Concern. In M. Nazal & H. Zhao (Eds.), Heavy Metals - Their Environmental Impacts and Mitigation. IntechOpen. https://doi.org/10.5772/intechopen.96805
Amir, H., Cavaloc, Y., Laurent, A., Pagand, P., Gunkel, P., Lemestre, M., . . . McCoy, S. (2019). Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment. Science of The Total Environment, 651, 334-343. https://doi.org/10.1016/j.scitotenv.2018.09.153
Andrade, S. A. L., Gratão, P. L., Azevedo, R. A., Silveira, A. P. D., Schiavinato, M. A., & Mazzafera, P. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68(2), 198-207. https://doi.org/10.1016/j.envexpbot.2009.11.009
Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret-Harte, M. S., Dale, M., . . . Wookey, P. A. (1999). Responses of Tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment. Ecological Monographs, 69(4), 491-511. https://doi.org/10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2
Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I.-B., & Oh, B.-T. (2015). Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. Journal of Environmental Management, 151, 160-166. https://doi.org/10.1016/j.jenvman.2014.12.045
Bai, J., Lin, X., Yin, R., Zhang, H., Junhua, W., Xueming, C., & Yongming, L. (2008). The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Applied Soil Ecology, 38(2), 137-145. https://doi.org/10.1016/j.apsoil.2007.10.002
Banerjee, S., Mandal, J., Sarkar, D., Datta, R., & Bhattacharyya, P. (2025). A review and meta-analysis of the efficacy of arbuscular mycorrhizal fungi in remediating toxic metals in mine-affected soils [Systematic Review]. Frontiers in Environmental Science, Volume 12 - 2024. https://doi.org/10.3389/fenvs.2024.1532169
Bargah, R. K. (2024). Heavy metals: environmental pollution and impact on human health. In B. Rai, M. Ahmed, K. Bhatt, R. Patel G. R., & S. Ellairaja (Eds.), Futuristic Trends in Chemical Material Sciences & Nano Technology (Vol. 3, pp. 461-482). https://doi.org/10.58532/V3BDCS18CH37
Chang, Q., Diao, F.-w., Wang, Q.-f., Pan, L., Dang, Z.-h., & Guo, W. (2018). Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environmental Pollution, 241, 607-615. https://doi.org/10.1016/j.envpol.2018.06.003
Chaturvedi, R., Favas, P., Pratas, J., Varun, M., & Paul, M. S. (2018). Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicology and Environmental Safety, 148, 318-326. https://doi.org/10.1016/j.ecoenv.2017.10.048
Chaudhary, T., & Shukla, P. (2019). Bioinoculants for Bioremediation Applications and Disease Resistance: Innovative Perspectives. Indian Journal of Microbiology, 59(2), 129-136. https://doi.org/10.1007/s12088-019-00783-4
Chen, G., Li, J., Han, H., Du, R., & Wang, X. (2022). Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. International Journal of Molecular Sciences, 23(21), 12950. https://doi.org/10.3390/ijms232112950
Cheng, C., Han, H., Wang, Y., Wang, R., He, L., & Sheng, X. (2020). Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil. Science of The Total Environment, 740, 139972. https://doi.org/10.1016/j.scitotenv.2020.139972
Chhimwal, M., & Srivastava, R. K. (2023). Microcosmic plant and fungi synergism-based filter to remediate the pollutants from industrial wastewater. Materials Today: Proceedings, 77, 322-327. https://doi.org/10.1016/j.matpr.2022.11.418
Chi, N. T. L., Hương, Đ. T. T., Đạo, P., & Lapcik, V. (2023). Phytoremediation proficiency of Jatropha gossypifolia under the influence of Pseudomonas aeruginosa on metal contaminated soil. Environmental Research, 232, 116295. https://doi.org/10.1016/j.envres.2023.116295
Chieb, M., & Gachomo, E. W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1), 407. https://doi.org/10.1186/s12870-023-04403-8
Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., & Saraiva Grossi, J. A. (2001). Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Journal of Plant Physiology, 158(6), 777-786. https://doi.org/10.1078/0176-1617-00311
Diaconu, M., Pavel, L. V., Hlihor, R.-M., Rosca, M., Fertu, D. I., Lenz, M., . . . Gavrilescu, M. (2020). Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation. New Biotechnology, 56, 130-139. https://doi.org/10.1016/j.nbt.2020.01.003
Duan, C., Razavi, B. S., Shen, G., Cui, Y., Ju, W., Li, S., & Fang, L. (2019). Deciphering the rhizobium inoculation effect on spatial distribution of phosphatase activity in the rhizosphere of alfalfa under copper stress. Soil Biology and Biochemistry, 137, 107574. https://doi.org/10.1016/j.soilbio.2019.107574
Dutta, C., & Sarma, R. N. (2022). Role of Root Traits and Root Phenotyping in Drought Tolerance. International Journal of Environment and Climate Change, 12(11), 2300-2309. https://doi.org/10.9734/ijecc/2022/v12i1131224
Escobar-Mamani, F., Moreno-Terrazas, E., Siguayro- Mamani, H., & Argota Pérez, G. (2023). Physicochemical characterization and presence of heavy metals in the trout farming area of Lake Titicaca, Peru. Sains Tanah Journal of Soil Science and Agroclimatology, 20(2), 10. https://doi.org/10.20961/stjssa.v20i2.62357
Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., . . . Ngom, K. (2022). Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil [Mini Review]. Frontiers in Fungal Biology, Volume 3 - 2022. https://doi.org/10.3389/ffunb.2022.723892
Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B., Rosenvald, R., . . . Gustafsson, L. (2014). REVIEW: Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology, 51(6), 1669-1679. https://doi.org/10.1111/1365-2664.12289
Gao, X., Li, B., Yuan, X., Yang, Y., Lv, M., Zhu, Z., . . . Gu, C. (2025). Potential of pigeon pea [Cajanus cajan (L.) Millsp.] associated with endophytic bacterium Bacillus cereus PEB-9 to remediate cadmium-contaminated soil. Journal of Hazardous Materials, 493, 138344. https://doi.org/10.1016/j.jhazmat.2025.138344
Gorovtsov, A., Rajput, V., Tatiana, M., Saglara, M., Svetlana, S., Igor, K., . . . Hasmik, M. (2019). The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Applied Geochemistry, 104, 93-101. https://doi.org/10.1016/j.apgeochem.2019.03.017
Guarino, C., & Sciarrillo, R. (2017). Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecological Engineering, 99, 70-82. https://doi.org/10.1016/j.ecoleng.2016.11.051
Guzmán-Moreno, J., García-Ortega, L. F., Torres-Saucedo, L., Rivas-Noriega, P., Ramírez-Santoyo, R. M., Sánchez-Calderón, L., . . . Vidales-Rodríguez, L. E. (2022). Bacillus megaterium HgT21: a Promising Metal Multiresistant Plant Growth-Promoting Bacteria for Soil Biorestoration. Microbiology Spectrum, 10(5), e00656-00622. https://doi.org/10.1128/spectrum.00656-22
Hagagy, N., Abdel-Mawgoud, M., Akhtar, N., Selim, S., & AbdElgawad, H. (2023). The new isolated Archaea strain improved grain yield, metabolism and quality of wheat plants under Co stress conditions. Journal of Plant Physiology, 280, 153876. https://doi.org/10.1016/j.jplph.2022.153876
Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., . . . Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. https://doi.org/10.1016/j.ecoenv.2021.112112
Han, H., Wu, X., Bolan, N., Kirkham, M. B., Yang, J., & Chen, Z. (2022). Inhibition of cadmium uptake by wheat with urease-producing bacteria combined with sheep manure under field conditions. Chemosphere, 293, 133534. https://doi.org/10.1016/j.chemosphere.2022.133534
Han, M., Yang, H., Ding, N., You, S., & Yu, G. (2021). The role of plant-associated bacteria in the phytoremediation of heavy metal contaminated soils. E3S Web Conf., 261, 04006. https://doi.org/10.1051/e3sconf/202126104006
Harrison, C. J., & Morris, J. L. (2018). The origin and early evolution of vascular plant shoots and leaves. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1739), 20160496. https://doi.org/10.1098/rstb.2016.0496
He, M., Yin, H., Liu, Z., Luo, F., Zhao, X., Li, H., & Song, X. (2024). Root exudate–assisted phytoremediation of copper and lead contamination using Rumex acetosa L. and Rumex K-1. Ecotoxicology and Environmental Safety, 284, 117036. https://doi.org/10.1016/j.ecoenv.2024.117036
Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80(4), 1150-1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic press. https://www.sciencedirect.com/book/9780080570655/statistical-methods-for-meta-analysis
Hou, S., Zheng, N., Tang, L., Ji, X., & Li, Y. (2019). Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environmental Monitoring and Assessment, 191(10), 634. https://doi.org/10.1007/s10661-019-7793-5
Huang, F., Chen, P., Tang, X., Zhong, T., Yang, T., Nwafor, C. C., . . . Zhang, C. (2023). Genome assembly of the Brassicaceae diploid Orychophragmus violaceus reveals complex whole-genome duplication and evolution of dihydroxy fatty acid metabolism. Plant Communications, 4(2), 100432. https://doi.org/10.1016/j.xplc.2022.100432
Ilyas, N., Akhtar, N., Yasmin, H., Sahreen, S., Hasnain, Z., Kaushik, P., . . . Ahmad, P. (2022). Efficacy of citric acid chelate and Bacillus sp. in amelioration of cadmium and chromium toxicity in wheat. Chemosphere, 290, 133342. https://doi.org/10.1016/j.chemosphere.2021.133342
Iqbal, N., Hayat, M. T., Zeb, B. S., Abbas, Z., & Ahmed, T. (2019). Chapter 21 - Phytoremediation of Cd-Contaminated Soil and Water. In M. Hasanuzzaman, M. N. V. Prasad, & M. Fujita (Eds.), Cadmium Toxicity and Tolerance in Plants (pp. 531-543). Academic Press. https://doi.org/10.1016/B978-0-12-814864-8.00021-8
Jaiswal, S. K., Mohammed, M., Ibny, F. Y. I., & Dakora, F. D. (2021). Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms [Review]. Frontiers in Sustainable Food Systems, Volume 4 - 2020. https://doi.org/10.3389/fsufs.2020.619676
Janaki, M., Kirupanantha-Rajan, P., Senthil-Nathan, S., Stanley-Raja, V., Al Farraj, D. A., Aljeidi, R. A., & Arokiyaraj, S. (2024). Beneficial role of Burkholderia cepacia in heavy metal bioremediation in metal-polluted soils and enhance the tomato plant growth. Biocatalysis and Agricultural Biotechnology, 57, 103032. https://doi.org/10.1016/j.bcab.2024.103032
Jennions, M. D., Lortie, C. J., Rosenberg, M. S., & Rothstein, H. R. (2013). 207Publication and Related Biases. In J. Koricheva, J. Gurevitch, & K. Mengersen (Eds.), Handbook of Meta-analysis in Ecology and Evolution (pp. 0). Princeton University Press. https://doi.org/10.23943/princeton/9780691137285.003.0014
Juwarkar, A. A., & Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99(11), 4732-4741. https://doi.org/10.1016/j.biortech.2007.09.060
Karthik, C., Kadirvelu, K., Bruno, B., Maharajan, K., Rajkumar, M., Manoj, S. R., & Arulselvi, P. I. (2021). Cellulosimicrobium funkei strain AR6 alleviate Cr(VI) toxicity in Lycopersicon esculentum by regulating the expression of growth responsible, stress tolerant and metal transporter genes. Rhizosphere, 18, 100351. https://doi.org/10.1016/j.rhisph.2021.100351
Kaur, P., Bali, S., Sharma, A., Vig, A. P., & Bhardwaj, R. (2017). Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils. Environmental Science and Pollution Research, 24(15), 13452-13465. https://doi.org/10.1007/s11356-017-8947-z
Khan, A. R., Waqas, M., Ullah, I., Khan, A. L., Khan, M. A., Lee, I.-J., & Shin, J.-H. (2017). Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environmental and Experimental Botany, 135, 126-135. https://doi.org/10.1016/j.envexpbot.2016.03.005
Kodre, A., Arčon, I., Debeljak, M., Potisek, M., Likar, M., & Vogel-Mikuš, K. (2017). Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure. Environmental and Experimental Botany, 133, 12-23. https://doi.org/10.1016/j.envexpbot.2016.09.006
Kohler, J., Hernández, J. A., Caravaca, F., & Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 35(2), 141-151. https://doi.org/10.1071/FP07218
Koricheva, J., Gurevitch, J., & Mengersen, K. (Eds.). (2013). Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press. http://www.jstor.org/stable/j.ctt24hq6n.
Kumari, S., Amit, Jamwal, R., Mishra, N., & Singh, D. K. (2020). Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring & Management, 13, 100283. https://doi.org/10.1016/j.enmm.2020.100283
Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2(3), 154-171. https://doi.org/10.1016/j.wmb.2024.07.005
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394. https://doi.org/10.1080/15320383.2019.1592108
Liang, X., He, C.-Q., Ni, G., Tang, G.-E., Chen, X.-P., & Lei, Y.-R. (2014). Growth and Cd Accumulation of Orychophragmus violaceus as Affected by Inoculation of Cd-Tolerant Bacterial Strains. Pedosphere, 24(3), 322-329. https://doi.org/10.1016/S1002-0160(14)60018-7
Linderman, R. G. (1992). Vesicular-Arbuscular Mycorrhizae and Soil Microbial Interactions. In Mycorrhizae in Sustainable Agriculture (pp. 45-70). https://doi.org/10.2134/asaspecpub54.c3
Lu, H., Xia, C., Chinnathambi, A., Nasif, O., Narayanan, M., Shanmugam, S., . . . Anupong, W. (2023). Optimistic influence of multi-metal tolerant Bacillus species on phytoremediation potential of Chrysopogon zizanioides on metal contaminated soil. Chemosphere, 311, 136889. https://doi.org/10.1016/j.chemosphere.2022.136889
Lubal, M. J. (2024). Impact of Heavy Metal Pollution on the Environment. Uttar Pradesh Journal of Zoology, 45(11), 97-105. https://doi.org/10.56557/upjoz/2024/v45i114074
Mair, A., Dupuy, L. X., & Ptashnyk, M. (2022). Can root systems redistribute soil water to mitigate the effects of drought? bioRxiv, 2022.2009.2015.508112. https://doi.org/10.1101/2022.09.15.508112
Manoj, S. R., Karthik, C., Kadirvelu, K., Arulselvi, P. I., Shanmugasundaram, T., Bruno, B., & Rajkumar, M. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 254, 109779. https://doi.org/10.1016/j.jenvman.2019.109779
Mishra, S., & De, A. (2024). Various sources of heavy metals contamination, including industrial activities, mining, agriculture, and urbanization. In V. Singh, A. Kumar, V. Mishra, & S. N. Rai (Eds.), Heavy Metal Contamination in the Environment (pp. 71-94). CRC Press. https://doi.org/10.1201/9781032685793-6
Mocanu, R., Cucu-Man, S., & Steinnes, E. (2006). Heavy Metals Pollution: An Everlasting Problem. In I. Barnes & K. J. Rudzinski, Environmental Simulation Chambers: Application to Atmospheric Chemical Processes Dordrecht.
Moogouei, R., & Chen, Y. (2020). Removal of cesium, lead, nitrate and sodium from wastewater using hydroponic constructed wetland. International Journal of Environmental Science and Technology, 17(7), 3495-3502. https://doi.org/10.1007/s13762-020-02627-x
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005
Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 286. https://doi.org/10.1007/s42452-021-04301-4
Olusegun, O., Akinola, Eniola, D., Adebayo, Adedeji, J., & Ogunyemi. (2024). Bioremediation of various Pollutants in the Ecosystem. Global International Journal of Innovative Research, 2(7), 1591-1600. https://doi.org/10.59613/global.v2i7.220
Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. https://doi.org/10.1016/j.envc.2021.100197
Patel, N., Khan, M. Z. A., Shahane, S., Rai, D., Chauhan, D., Kant, C., & Chaudhary, V. K. (2020). Emerging Pollutants in Aquatic Environment: Source, Effect, and Challenges in Biomonitoring and Bioremediation- A Review. Pollution, 6(1), 99-113. https://doi.org/10.22059/poll.2019.285116.646
Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067
Reynolds, H. L., Packer, A., Bever, J. D., & Clay, K. (2003). GRASSROOTS ECOLOGY: PLANT–MICROBE–SOIL INTERACTIONS AS DRIVERS OF PLANT COMMUNITY STRUCTURE AND DYNAMICS. Ecology, 84(9), 2281-2291. https://doi.org/10.1890/02-0298
Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464-468. https://doi.org/10.1111/j.0014-3820.2005.tb01004.x
Rosenberg, M. S. (2013). Moment and Least-Squares Based Approaches to Meta-analytic Inference. In J. Koricheva, J. Gurevitch, & K. Mengersen (Eds.), Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press. https://doi.org/10.23943/princeton/9780691137285.003.0009
Sarma, H. H., Rajkumar, A., Baro, A., Das, B. C., & Talukdar, N. (2024). Impact of Heavy Metal Contamination on Soil and Crop Ecosystem with Advanced Techniques to Mitigate Them. Journal of Advances in Biology & Biotechnology, 27(6), 53-63. https://doi.org/10.9734/jabb/2024/v27i6865
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., . . . Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116
Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., . . . Smith, D. L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience [Review]. Frontiers in Sustainable Food Systems, Volume 5 - 2021. https://doi.org/10.3389/fsufs.2021.667546
Tang, H., Xiang, G., Xiao, W., Yang, Z., & Zhao, B. (2024). Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects [Review]. Frontiers in Plant Science, Volume 15 - 2024. https://doi.org/10.3389/fpls.2024.1420408
Thakur, M., Praveen, S., Divte, P. R., Mitra, R., Kumar, M., Gupta, C. K., . . . Singh, B. (2022). Metal tolerance in plants: Molecular and physicochemical interface determines the “not so heavy effect” of heavy metals. Chemosphere, 287, 131957. https://doi.org/10.1016/j.chemosphere.2021.131957
Timothy, N. a., & Williams, E. T. (2019). Environmental Pollution by Heavy Metal: An Overview. International Journal of Environmental Chemistry, 3(2), 72-82. https://doi.org/10.11648/j.ijec.20190302.14
Tripathi, P., Tripathi, A., Singh, A., Yadav, V., Shanker, K., Khare, P., & Kalra, A. (2022). Differential response of two endophytic bacterial strains inoculation on biochemical and physiological parameters of Bacopa monnieri L. under arsenic stress conditions. Journal of Hazardous Materials Advances, 6, 100055. https://doi.org/10.1016/j.hazadv.2022.100055
Ullah, I., Al-Johny, B. O., Al-Ghamdi, K. M. S., Al-Zahrani, H. A. A., Anwar, Y., Firoz, A., . . . Almatry, M. A. A. (2019). Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicology and Environmental Safety, 174, 197-207. https://doi.org/10.1016/j.ecoenv.2019.02.074
Ullah, I., Anwar, Y., Siddiqui, M. F., Alsulami, N., & Ullah, R. (2024). Phytoremediation of Arsenic (As) in rice plants, mediated by Bacillus subtilis strain IU31 through antioxidant responses and phytohormones synthesis. Environmental Pollution, 355, 124207. https://doi.org/10.1016/j.envpol.2024.124207
Ur Rahman, S., Qin, A., Zain, M., Mushtaq, Z., Mehmood, F., Riaz, L., . . . Shehzad, M. (2024). Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon, 10(6), e27724. https://doi.org/10.1016/j.heliyon.2024.e27724
Wallace, B. C., Lajeunesse, M. J., Dietz, G., Dahabreh, I. J., Trikalinos, T. A., Schmid, C. H., & Gurevitch, J. (2017). OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods in Ecology and Evolution, 8(8), 941-947. https://doi.org/10.1111/2041-210X.12708
Wang, F. Y., Lin, X. G., & Yin, R. (2007). Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environmental Pollution, 147(1), 248-255. https://doi.org/10.1016/j.envpol.2006.08.005
Wang, J., Fu, H., Xu, D., Mu, Z., & Fu, R. (2022). The Remediation Mechanisms and Effects of Chemical Amendments for Heavy Metals in Contaminated Soils: A Review of Literature [journal article]. Polish Journal of Environmental Studies, 31(5), 4511-4522. https://doi.org/10.15244/pjoes/146705
Wang, M., Chen, S., Han, Y., Chen, L., & Wang, D. (2019). Responses of soil aggregates and bacterial communities to soil-Pb immobilization induced by biofertilizer. Chemosphere, 220, 828-836. https://doi.org/10.1016/j.chemosphere.2018.12.214
Wang, X., Chang, W., Fan, X., Li, K., Zhang, M., Ping, Y., . . . Song, F. (2023). Cocultivation with Solanum nigrum and inoculation with Rhizophagus intraradices can improve plant photosynthesis and antioxidant defense to alleviate cadmium toxicity to soybean. Ecotoxicology and Environmental Safety, 256, 114849. https://doi.org/10.1016/j.ecoenv.2023.114849
Waseem, M., Khilji, S. A., Tariq, S., Jamal, A., Alomrani, S. O., & Javed, T. (2024). Phytoremediation of heavy metals from industrially contaminated soil using sunflower (Helianthus annus L.) by inoculation of two indigenous bacteria. Plant Stress, 11, 100297. https://doi.org/10.1016/j.stress.2023.100297
Wen, T., Cheng, Y., Yuan, Y., & Sun, R. (2025). Quantitative analysis and risk assessment of heavy metal pollution in an intensive industrial and agricultural region. Ecotoxicology and Environmental Safety, 289, 117634. https://doi.org/10.1016/j.ecoenv.2024.117634
Wu, R., Sun, X., Zhu, M., Wang, Y., Zhu, Y., Fang, Z., . . . Du, S. (2025). Abscisic acid-producing bacterium Azospirillum brasilense effectively reduces heavy metals (cadmium, nickel, lead, and zinc) accumulation in pak choi across various soil types. Ecotoxicology and Environmental Safety, 298, 118277. https://doi.org/10.1016/j.ecoenv.2025.118277
Xing, D., Wang, W., Wu, Y., Qin, X., Li, M., Chen, X., & Yu, R. (2022). Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plants Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L. Horticulturae, 8(11), 1082. https://doi.org/10.3390/horticulturae8111082
Xiong, J., Zou, D., Kang, J., Mo, Y., Li, L., Zhan, L., . . . Xiao, Z. (2024). Improving peanut growth and cadmium phytoextraction capacity by inoculating Bacillus megaterium and Trichoderma harzianum. Journal of Environmental Management, 370, 122758. https://doi.org/10.1016/j.jenvman.2024.122758
Xu, F.-Q., Meng, L.-L., Kuča, K., & Wu, Q.-S. (2024). The mechanism of arbuscular mycorrhizal fungi-alleviated manganese toxicity in plants: A review. Plant Physiology and Biochemistry, 213, 108808. https://doi.org/10.1016/j.plaphy.2024.108808
Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Ahmad Khan, S. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120, 274-298. https://doi.org/10.1016/j.ecoleng.2018.05.039
Yang, Y., Liu, Y., Li, Z., Wang, Z., Li, C., & Wei, H. (2020). Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. International Journal of Environmental Science and Technology, 17(4), 2477-2484. https://doi.org/10.1007/s13762-020-02668-2
Younesi, O., & Moradi, A. (2014). Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (phaseolus vulgaris l.). Agriculture (Pol'nohospodárstvo), 60(1), 10-21. https://doi.org/10.2478/agri-2014-0002
Yu, P., Sun, Y., Huang, Z., Zhu, F., Sun, Y., & Jiang, L. (2020). The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. Journal of Hazardous Materials, 381, 121203. https://doi.org/10.1016/j.jhazmat.2019.121203
Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657. https://doi.org/10.1016/j.cej.2020.125657
Zheng, X., Lin, H., Du, D., Li, G., Alam, O., Cheng, Z., . . . Li, J. (2024). Remediation of heavy metals polluted soil environment: A critical review on biological approaches. Ecotoxicology and Environmental Safety, 284, 116883. https://doi.org/10.1016/j.ecoenv.2024.116883
Zhou, X., Yang, Y., Yin, Q., Zhang, X., & Li, M. (2021). Application potential of Comamonas testosteroni ZG2 for vegetable cultivation in nickel and cadmium polluted soil. Environmental Technology & Innovation, 23, 101626. https://doi.org/10.1016/j.eti.2021.101626
Zhu, Y., Wang, Y., He, X., Li, B., & Du, S. (2023). Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Chemosphere, 338, 139475. https://doi.org/10.1016/j.chemosphere.2023.139475
Refbacks
- There are currently no refbacks.









.png)





