The culture inoculation method could influence heavy metals levels in soil, plant uptake, and biomass: a meta-analysis

Taufiq Bachtiar, Ratih Nurjayati, Ania Citraresmini, Hidawati Hidawati, Veny Rachmawati, Asep Mulyono, Rhazista Noviardi, Wilda Naily, Merri Jayanti, Siti Wahyuningsih, Dyah Marganingrum, Muhammad Rahman Djuwansyah, Mohd Noor Hidayat Adenan

Abstract

Heavy metals (HMS) contamination in soil is a major issue that significantly impacts plants and human health. Various approaches have been employed to mitigate the effects of heavy metals, including the application of microorganisms (MO). This study aims to analyze the impact of bioinoculation application on HMS content in plants and soil through a meta-analysis approach. Twenty-nine publications reviewed between 2001 and 2023 reported the effects of microorganism applications on HMS content in plants and soil. A systematic review was applied to select relevant studies, and effect sizes (ES) were calculated using Hedges’d to quantify the impact of microbial treatments on heavy metal content. The parameters observed were As, Hg, Cd, Cr, Ni, Co, Pb, Ni, Mn, Zn, and Fe in plants (shoots, roots, fruit, and total plants), soil, and plant biomass. The ES values of Hedges’ microorganisms HMS on soil, plants, and plant biomass were -3.257 (p<0.001), 1.234 (p<0.001), and 2.301 (p<0.001), respectively. The results showed that the greatest reduction in HMS content in the soil was the combined application of fungi and bacteria (ES -5.519; p<0.001), and the highest metal content absorbed by the soil and plants was Cu (ES -13.642; p<0.001) and Pb (2.645; p<0.001), respectively. This study showed that Orychophragmus violaceus had the highest metal absorption rate (ES 15.528, p<0.001) to help clean up heavy metal contamination, especially in agricultural land and industrial areas. This approach can improve soil quality, enhance plant growth, and reduce health risks, which benefits farmers, policymakers, and environmental agencies.

Keywords

Bacteria; Fungi; Heavy metals; Immobilization; Phytoremediation

Full Text:

PDF

References

Aalipour, H., Nikbakht, A., & Etemadi, N. (2021). Physiological response of Arizona cypress to Cd-contaminated soil inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Rhizosphere, 18, 100354. https://doi.org/10.1016/j.rhisph.2021.100354

Afonne, O. J., & Ifediba, E. C. (2020). Heavy metals risks in plant foods – need to step up precautionary measures. Current Opinion in Toxicology, 22, 1-6. https://doi.org/10.1016/j.cotox.2019.12.006

Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12. https://doi.org/10.1016/j.arabjc.2014.11.020

Al-Maliki, S., & Al-Shamary, A. (2022). Vital evidence for arbuscular mycorrhizal fungi, bacteria and cattail plant to remove Pb-Cd heavy metals from contaminated soils. Acta Ecologica Sinica, 42(4), 392-397. https://doi.org/10.1016/j.chnaes.2022.05.008

Ali, M. M. M., Hossain, D., Imran, A., Khan, M. S., Begum, M., & Osman, M. H. (2021). Environmental Pollution with Heavy Metals: A Public Health Concern. In M. Nazal & H. Zhao (Eds.), Heavy Metals - Their Environmental Impacts and Mitigation. IntechOpen. https://doi.org/10.5772/intechopen.96805

Amir, H., Cavaloc, Y., Laurent, A., Pagand, P., Gunkel, P., Lemestre, M., . . . McCoy, S. (2019). Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment. Science of The Total Environment, 651, 334-343. https://doi.org/10.1016/j.scitotenv.2018.09.153

Andrade, S. A. L., Gratão, P. L., Azevedo, R. A., Silveira, A. P. D., Schiavinato, M. A., & Mazzafera, P. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68(2), 198-207. https://doi.org/10.1016/j.envexpbot.2009.11.009

Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret-Harte, M. S., Dale, M., . . . Wookey, P. A. (1999). Responses of Tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment. Ecological Monographs, 69(4), 491-511. https://doi.org/10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2

Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I.-B., & Oh, B.-T. (2015). Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. Journal of Environmental Management, 151, 160-166. https://doi.org/10.1016/j.jenvman.2014.12.045

Bai, J., Lin, X., Yin, R., Zhang, H., Junhua, W., Xueming, C., & Yongming, L. (2008). The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Applied Soil Ecology, 38(2), 137-145. https://doi.org/10.1016/j.apsoil.2007.10.002

Banerjee, S., Mandal, J., Sarkar, D., Datta, R., & Bhattacharyya, P. (2025). A review and meta-analysis of the efficacy of arbuscular mycorrhizal fungi in remediating toxic metals in mine-affected soils [Systematic Review]. Frontiers in Environmental Science, Volume 12 - 2024. https://doi.org/10.3389/fenvs.2024.1532169

Bargah, R. K. (2024). Heavy metals: environmental pollution and impact on human health. In B. Rai, M. Ahmed, K. Bhatt, R. Patel G. R., & S. Ellairaja (Eds.), Futuristic Trends in Chemical Material Sciences & Nano Technology (Vol. 3, pp. 461-482). https://doi.org/10.58532/V3BDCS18CH37

Chang, Q., Diao, F.-w., Wang, Q.-f., Pan, L., Dang, Z.-h., & Guo, W. (2018). Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environmental Pollution, 241, 607-615. https://doi.org/10.1016/j.envpol.2018.06.003

Chaturvedi, R., Favas, P., Pratas, J., Varun, M., & Paul, M. S. (2018). Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicology and Environmental Safety, 148, 318-326. https://doi.org/10.1016/j.ecoenv.2017.10.048

Chaudhary, T., & Shukla, P. (2019). Bioinoculants for Bioremediation Applications and Disease Resistance: Innovative Perspectives. Indian Journal of Microbiology, 59(2), 129-136. https://doi.org/10.1007/s12088-019-00783-4

Chen, G., Li, J., Han, H., Du, R., & Wang, X. (2022). Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. International Journal of Molecular Sciences, 23(21), 12950. https://doi.org/10.3390/ijms232112950

Cheng, C., Han, H., Wang, Y., Wang, R., He, L., & Sheng, X. (2020). Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil. Science of The Total Environment, 740, 139972. https://doi.org/10.1016/j.scitotenv.2020.139972

Chhimwal, M., & Srivastava, R. K. (2023). Microcosmic plant and fungi synergism-based filter to remediate the pollutants from industrial wastewater. Materials Today: Proceedings, 77, 322-327. https://doi.org/10.1016/j.matpr.2022.11.418

Chi, N. T. L., Hương, Đ. T. T., Đạo, P., & Lapcik, V. (2023). Phytoremediation proficiency of Jatropha gossypifolia under the influence of Pseudomonas aeruginosa on metal contaminated soil. Environmental Research, 232, 116295. https://doi.org/10.1016/j.envres.2023.116295

Chieb, M., & Gachomo, E. W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1), 407. https://doi.org/10.1186/s12870-023-04403-8

Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., & Saraiva Grossi, J. A. (2001). Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Journal of Plant Physiology, 158(6), 777-786. https://doi.org/10.1078/0176-1617-00311

Diaconu, M., Pavel, L. V., Hlihor, R.-M., Rosca, M., Fertu, D. I., Lenz, M., . . . Gavrilescu, M. (2020). Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation. New Biotechnology, 56, 130-139. https://doi.org/10.1016/j.nbt.2020.01.003

Duan, C., Razavi, B. S., Shen, G., Cui, Y., Ju, W., Li, S., & Fang, L. (2019). Deciphering the rhizobium inoculation effect on spatial distribution of phosphatase activity in the rhizosphere of alfalfa under copper stress. Soil Biology and Biochemistry, 137, 107574. https://doi.org/10.1016/j.soilbio.2019.107574

Dutta, C., & Sarma, R. N. (2022). Role of Root Traits and Root Phenotyping in Drought Tolerance. International Journal of Environment and Climate Change, 12(11), 2300-2309. https://doi.org/10.9734/ijecc/2022/v12i1131224

Escobar-Mamani, F., Moreno-Terrazas, E., Siguayro- Mamani, H., & Argota Pérez, G. (2023). Physicochemical characterization and presence of heavy metals in the trout farming area of Lake Titicaca, Peru. Sains Tanah Journal of Soil Science and Agroclimatology, 20(2), 10. https://doi.org/10.20961/stjssa.v20i2.62357

Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., . . . Ngom, K. (2022). Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil [Mini Review]. Frontiers in Fungal Biology, Volume 3 - 2022. https://doi.org/10.3389/ffunb.2022.723892

Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B., Rosenvald, R., . . . Gustafsson, L. (2014). REVIEW: Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology, 51(6), 1669-1679. https://doi.org/10.1111/1365-2664.12289

Gao, X., Li, B., Yuan, X., Yang, Y., Lv, M., Zhu, Z., . . . Gu, C. (2025). Potential of pigeon pea [Cajanus cajan (L.) Millsp.] associated with endophytic bacterium Bacillus cereus PEB-9 to remediate cadmium-contaminated soil. Journal of Hazardous Materials, 493, 138344. https://doi.org/10.1016/j.jhazmat.2025.138344

Gorovtsov, A., Rajput, V., Tatiana, M., Saglara, M., Svetlana, S., Igor, K., . . . Hasmik, M. (2019). The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Applied Geochemistry, 104, 93-101. https://doi.org/10.1016/j.apgeochem.2019.03.017

Guarino, C., & Sciarrillo, R. (2017). Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecological Engineering, 99, 70-82. https://doi.org/10.1016/j.ecoleng.2016.11.051

Guzmán-Moreno, J., García-Ortega, L. F., Torres-Saucedo, L., Rivas-Noriega, P., Ramírez-Santoyo, R. M., Sánchez-Calderón, L., . . . Vidales-Rodríguez, L. E. (2022). Bacillus megaterium HgT21: a Promising Metal Multiresistant Plant Growth-Promoting Bacteria for Soil Biorestoration. Microbiology Spectrum, 10(5), e00656-00622. https://doi.org/10.1128/spectrum.00656-22

Hagagy, N., Abdel-Mawgoud, M., Akhtar, N., Selim, S., & AbdElgawad, H. (2023). The new isolated Archaea strain improved grain yield, metabolism and quality of wheat plants under Co stress conditions. Journal of Plant Physiology, 280, 153876. https://doi.org/10.1016/j.jplph.2022.153876

Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., . . . Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. https://doi.org/10.1016/j.ecoenv.2021.112112

Han, H., Wu, X., Bolan, N., Kirkham, M. B., Yang, J., & Chen, Z. (2022). Inhibition of cadmium uptake by wheat with urease-producing bacteria combined with sheep manure under field conditions. Chemosphere, 293, 133534. https://doi.org/10.1016/j.chemosphere.2022.133534

Han, M., Yang, H., Ding, N., You, S., & Yu, G. (2021). The role of plant-associated bacteria in the phytoremediation of heavy metal contaminated soils. E3S Web Conf., 261, 04006. https://doi.org/10.1051/e3sconf/202126104006

Harrison, C. J., & Morris, J. L. (2018). The origin and early evolution of vascular plant shoots and leaves. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1739), 20160496. https://doi.org/10.1098/rstb.2016.0496

He, M., Yin, H., Liu, Z., Luo, F., Zhao, X., Li, H., & Song, X. (2024). Root exudate–assisted phytoremediation of copper and lead contamination using Rumex acetosa L. and Rumex K-1. Ecotoxicology and Environmental Safety, 284, 117036. https://doi.org/10.1016/j.ecoenv.2024.117036

Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80(4), 1150-1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2

Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic press. https://www.sciencedirect.com/book/9780080570655/statistical-methods-for-meta-analysis

Hou, S., Zheng, N., Tang, L., Ji, X., & Li, Y. (2019). Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environmental Monitoring and Assessment, 191(10), 634. https://doi.org/10.1007/s10661-019-7793-5

Huang, F., Chen, P., Tang, X., Zhong, T., Yang, T., Nwafor, C. C., . . . Zhang, C. (2023). Genome assembly of the Brassicaceae diploid Orychophragmus violaceus reveals complex whole-genome duplication and evolution of dihydroxy fatty acid metabolism. Plant Communications, 4(2), 100432. https://doi.org/10.1016/j.xplc.2022.100432

Ilyas, N., Akhtar, N., Yasmin, H., Sahreen, S., Hasnain, Z., Kaushik, P., . . . Ahmad, P. (2022). Efficacy of citric acid chelate and Bacillus sp. in amelioration of cadmium and chromium toxicity in wheat. Chemosphere, 290, 133342. https://doi.org/10.1016/j.chemosphere.2021.133342

Iqbal, N., Hayat, M. T., Zeb, B. S., Abbas, Z., & Ahmed, T. (2019). Chapter 21 - Phytoremediation of Cd-Contaminated Soil and Water. In M. Hasanuzzaman, M. N. V. Prasad, & M. Fujita (Eds.), Cadmium Toxicity and Tolerance in Plants (pp. 531-543). Academic Press. https://doi.org/10.1016/B978-0-12-814864-8.00021-8

Jaiswal, S. K., Mohammed, M., Ibny, F. Y. I., & Dakora, F. D. (2021). Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms [Review]. Frontiers in Sustainable Food Systems, Volume 4 - 2020. https://doi.org/10.3389/fsufs.2020.619676

Janaki, M., Kirupanantha-Rajan, P., Senthil-Nathan, S., Stanley-Raja, V., Al Farraj, D. A., Aljeidi, R. A., & Arokiyaraj, S. (2024). Beneficial role of Burkholderia cepacia in heavy metal bioremediation in metal-polluted soils and enhance the tomato plant growth. Biocatalysis and Agricultural Biotechnology, 57, 103032. https://doi.org/10.1016/j.bcab.2024.103032

Jennions, M. D., Lortie, C. J., Rosenberg, M. S., & Rothstein, H. R. (2013). 207Publication and Related Biases. In J. Koricheva, J. Gurevitch, & K. Mengersen (Eds.), Handbook of Meta-analysis in Ecology and Evolution (pp. 0). Princeton University Press. https://doi.org/10.23943/princeton/9780691137285.003.0014

Juwarkar, A. A., & Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99(11), 4732-4741. https://doi.org/10.1016/j.biortech.2007.09.060

Karthik, C., Kadirvelu, K., Bruno, B., Maharajan, K., Rajkumar, M., Manoj, S. R., & Arulselvi, P. I. (2021). Cellulosimicrobium funkei strain AR6 alleviate Cr(VI) toxicity in Lycopersicon esculentum by regulating the expression of growth responsible, stress tolerant and metal transporter genes. Rhizosphere, 18, 100351. https://doi.org/10.1016/j.rhisph.2021.100351

Kaur, P., Bali, S., Sharma, A., Vig, A. P., & Bhardwaj, R. (2017). Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils. Environmental Science and Pollution Research, 24(15), 13452-13465. https://doi.org/10.1007/s11356-017-8947-z

Khan, A. R., Waqas, M., Ullah, I., Khan, A. L., Khan, M. A., Lee, I.-J., & Shin, J.-H. (2017). Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environmental and Experimental Botany, 135, 126-135. https://doi.org/10.1016/j.envexpbot.2016.03.005

Kodre, A., Arčon, I., Debeljak, M., Potisek, M., Likar, M., & Vogel-Mikuš, K. (2017). Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure. Environmental and Experimental Botany, 133, 12-23. https://doi.org/10.1016/j.envexpbot.2016.09.006

Kohler, J., Hernández, J. A., Caravaca, F., & Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 35(2), 141-151. https://doi.org/10.1071/FP07218

Koricheva, J., Gurevitch, J., & Mengersen, K. (Eds.). (2013). Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press. http://www.jstor.org/stable/j.ctt24hq6n.

Kumari, S., Amit, Jamwal, R., Mishra, N., & Singh, D. K. (2020). Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring & Management, 13, 100283. https://doi.org/10.1016/j.enmm.2020.100283

Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2(3), 154-171. https://doi.org/10.1016/j.wmb.2024.07.005

Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394. https://doi.org/10.1080/15320383.2019.1592108

Liang, X., He, C.-Q., Ni, G., Tang, G.-E., Chen, X.-P., & Lei, Y.-R. (2014). Growth and Cd Accumulation of Orychophragmus violaceus as Affected by Inoculation of Cd-Tolerant Bacterial Strains. Pedosphere, 24(3), 322-329. https://doi.org/10.1016/S1002-0160(14)60018-7

Linderman, R. G. (1992). Vesicular-Arbuscular Mycorrhizae and Soil Microbial Interactions. In Mycorrhizae in Sustainable Agriculture (pp. 45-70). https://doi.org/10.2134/asaspecpub54.c3

Lu, H., Xia, C., Chinnathambi, A., Nasif, O., Narayanan, M., Shanmugam, S., . . . Anupong, W. (2023). Optimistic influence of multi-metal tolerant Bacillus species on phytoremediation potential of Chrysopogon zizanioides on metal contaminated soil. Chemosphere, 311, 136889. https://doi.org/10.1016/j.chemosphere.2022.136889

Lubal, M. J. (2024). Impact of Heavy Metal Pollution on the Environment. Uttar Pradesh Journal of Zoology, 45(11), 97-105. https://doi.org/10.56557/upjoz/2024/v45i114074

Mair, A., Dupuy, L. X., & Ptashnyk, M. (2022). Can root systems redistribute soil water to mitigate the effects of drought? bioRxiv, 2022.2009.2015.508112. https://doi.org/10.1101/2022.09.15.508112

Manoj, S. R., Karthik, C., Kadirvelu, K., Arulselvi, P. I., Shanmugasundaram, T., Bruno, B., & Rajkumar, M. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 254, 109779. https://doi.org/10.1016/j.jenvman.2019.109779

Mishra, S., & De, A. (2024). Various sources of heavy metals contamination, including industrial activities, mining, agriculture, and urbanization. In V. Singh, A. Kumar, V. Mishra, & S. N. Rai (Eds.), Heavy Metal Contamination in the Environment (pp. 71-94). CRC Press. https://doi.org/10.1201/9781032685793-6

Mocanu, R., Cucu-Man, S., & Steinnes, E. (2006). Heavy Metals Pollution: An Everlasting Problem. In I. Barnes & K. J. Rudzinski, Environmental Simulation Chambers: Application to Atmospheric Chemical Processes Dordrecht.

Moogouei, R., & Chen, Y. (2020). Removal of cesium, lead, nitrate and sodium from wastewater using hydroponic constructed wetland. International Journal of Environmental Science and Technology, 17(7), 3495-3502. https://doi.org/10.1007/s13762-020-02627-x

Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005

Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 286. https://doi.org/10.1007/s42452-021-04301-4

Olusegun, O., Akinola, Eniola, D., Adebayo, Adedeji, J., & Ogunyemi. (2024). Bioremediation of various Pollutants in the Ecosystem. Global International Journal of Innovative Research, 2(7), 1591-1600. https://doi.org/10.59613/global.v2i7.220

Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. https://doi.org/10.1016/j.envc.2021.100197

Patel, N., Khan, M. Z. A., Shahane, S., Rai, D., Chauhan, D., Kant, C., & Chaudhary, V. K. (2020). Emerging Pollutants in Aquatic Environment: Source, Effect, and Challenges in Biomonitoring and Bioremediation- A Review. Pollution, 6(1), 99-113. https://doi.org/10.22059/poll.2019.285116.646

Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067

Reynolds, H. L., Packer, A., Bever, J. D., & Clay, K. (2003). GRASSROOTS ECOLOGY: PLANT–MICROBE–SOIL INTERACTIONS AS DRIVERS OF PLANT COMMUNITY STRUCTURE AND DYNAMICS. Ecology, 84(9), 2281-2291. https://doi.org/10.1890/02-0298

Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464-468. https://doi.org/10.1111/j.0014-3820.2005.tb01004.x

Rosenberg, M. S. (2013). Moment and Least-Squares Based Approaches to Meta-analytic Inference. In J. Koricheva, J. Gurevitch, & K. Mengersen (Eds.), Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press. https://doi.org/10.23943/princeton/9780691137285.003.0009

Sarma, H. H., Rajkumar, A., Baro, A., Das, B. C., & Talukdar, N. (2024). Impact of Heavy Metal Contamination on Soil and Crop Ecosystem with Advanced Techniques to Mitigate Them. Journal of Advances in Biology & Biotechnology, 27(6), 53-63. https://doi.org/10.9734/jabb/2024/v27i6865

Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., . . . Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116

Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., . . . Smith, D. L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience [Review]. Frontiers in Sustainable Food Systems, Volume 5 - 2021. https://doi.org/10.3389/fsufs.2021.667546

Tang, H., Xiang, G., Xiao, W., Yang, Z., & Zhao, B. (2024). Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects [Review]. Frontiers in Plant Science, Volume 15 - 2024. https://doi.org/10.3389/fpls.2024.1420408

Thakur, M., Praveen, S., Divte, P. R., Mitra, R., Kumar, M., Gupta, C. K., . . . Singh, B. (2022). Metal tolerance in plants: Molecular and physicochemical interface determines the “not so heavy effect” of heavy metals. Chemosphere, 287, 131957. https://doi.org/10.1016/j.chemosphere.2021.131957

Timothy, N. a., & Williams, E. T. (2019). Environmental Pollution by Heavy Metal: An Overview. International Journal of Environmental Chemistry, 3(2), 72-82. https://doi.org/10.11648/j.ijec.20190302.14

Tripathi, P., Tripathi, A., Singh, A., Yadav, V., Shanker, K., Khare, P., & Kalra, A. (2022). Differential response of two endophytic bacterial strains inoculation on biochemical and physiological parameters of Bacopa monnieri L. under arsenic stress conditions. Journal of Hazardous Materials Advances, 6, 100055. https://doi.org/10.1016/j.hazadv.2022.100055

Ullah, I., Al-Johny, B. O., Al-Ghamdi, K. M. S., Al-Zahrani, H. A. A., Anwar, Y., Firoz, A., . . . Almatry, M. A. A. (2019). Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicology and Environmental Safety, 174, 197-207. https://doi.org/10.1016/j.ecoenv.2019.02.074

Ullah, I., Anwar, Y., Siddiqui, M. F., Alsulami, N., & Ullah, R. (2024). Phytoremediation of Arsenic (As) in rice plants, mediated by Bacillus subtilis strain IU31 through antioxidant responses and phytohormones synthesis. Environmental Pollution, 355, 124207. https://doi.org/10.1016/j.envpol.2024.124207

Ur Rahman, S., Qin, A., Zain, M., Mushtaq, Z., Mehmood, F., Riaz, L., . . . Shehzad, M. (2024). Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon, 10(6), e27724. https://doi.org/10.1016/j.heliyon.2024.e27724

Wallace, B. C., Lajeunesse, M. J., Dietz, G., Dahabreh, I. J., Trikalinos, T. A., Schmid, C. H., & Gurevitch, J. (2017). OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods in Ecology and Evolution, 8(8), 941-947. https://doi.org/10.1111/2041-210X.12708

Wang, F. Y., Lin, X. G., & Yin, R. (2007). Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environmental Pollution, 147(1), 248-255. https://doi.org/10.1016/j.envpol.2006.08.005

Wang, J., Fu, H., Xu, D., Mu, Z., & Fu, R. (2022). The Remediation Mechanisms and Effects of Chemical Amendments for Heavy Metals in Contaminated Soils: A Review of Literature [journal article]. Polish Journal of Environmental Studies, 31(5), 4511-4522. https://doi.org/10.15244/pjoes/146705

Wang, M., Chen, S., Han, Y., Chen, L., & Wang, D. (2019). Responses of soil aggregates and bacterial communities to soil-Pb immobilization induced by biofertilizer. Chemosphere, 220, 828-836. https://doi.org/10.1016/j.chemosphere.2018.12.214

Wang, X., Chang, W., Fan, X., Li, K., Zhang, M., Ping, Y., . . . Song, F. (2023). Cocultivation with Solanum nigrum and inoculation with Rhizophagus intraradices can improve plant photosynthesis and antioxidant defense to alleviate cadmium toxicity to soybean. Ecotoxicology and Environmental Safety, 256, 114849. https://doi.org/10.1016/j.ecoenv.2023.114849

Waseem, M., Khilji, S. A., Tariq, S., Jamal, A., Alomrani, S. O., & Javed, T. (2024). Phytoremediation of heavy metals from industrially contaminated soil using sunflower (Helianthus annus L.) by inoculation of two indigenous bacteria. Plant Stress, 11, 100297. https://doi.org/10.1016/j.stress.2023.100297

Wen, T., Cheng, Y., Yuan, Y., & Sun, R. (2025). Quantitative analysis and risk assessment of heavy metal pollution in an intensive industrial and agricultural region. Ecotoxicology and Environmental Safety, 289, 117634. https://doi.org/10.1016/j.ecoenv.2024.117634

Wu, R., Sun, X., Zhu, M., Wang, Y., Zhu, Y., Fang, Z., . . . Du, S. (2025). Abscisic acid-producing bacterium Azospirillum brasilense effectively reduces heavy metals (cadmium, nickel, lead, and zinc) accumulation in pak choi across various soil types. Ecotoxicology and Environmental Safety, 298, 118277. https://doi.org/10.1016/j.ecoenv.2025.118277

Xing, D., Wang, W., Wu, Y., Qin, X., Li, M., Chen, X., & Yu, R. (2022). Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plants Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L. Horticulturae, 8(11), 1082. https://doi.org/10.3390/horticulturae8111082

Xiong, J., Zou, D., Kang, J., Mo, Y., Li, L., Zhan, L., . . . Xiao, Z. (2024). Improving peanut growth and cadmium phytoextraction capacity by inoculating Bacillus megaterium and Trichoderma harzianum. Journal of Environmental Management, 370, 122758. https://doi.org/10.1016/j.jenvman.2024.122758

Xu, F.-Q., Meng, L.-L., Kuča, K., & Wu, Q.-S. (2024). The mechanism of arbuscular mycorrhizal fungi-alleviated manganese toxicity in plants: A review. Plant Physiology and Biochemistry, 213, 108808. https://doi.org/10.1016/j.plaphy.2024.108808

Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Ahmad Khan, S. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120, 274-298. https://doi.org/10.1016/j.ecoleng.2018.05.039

Yang, Y., Liu, Y., Li, Z., Wang, Z., Li, C., & Wei, H. (2020). Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. International Journal of Environmental Science and Technology, 17(4), 2477-2484. https://doi.org/10.1007/s13762-020-02668-2

Younesi, O., & Moradi, A. (2014). Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (phaseolus vulgaris l.). Agriculture (Pol'nohospodárstvo), 60(1), 10-21. https://doi.org/10.2478/agri-2014-0002

Yu, P., Sun, Y., Huang, Z., Zhu, F., Sun, Y., & Jiang, L. (2020). The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. Journal of Hazardous Materials, 381, 121203. https://doi.org/10.1016/j.jhazmat.2019.121203

Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657. https://doi.org/10.1016/j.cej.2020.125657

Zheng, X., Lin, H., Du, D., Li, G., Alam, O., Cheng, Z., . . . Li, J. (2024). Remediation of heavy metals polluted soil environment: A critical review on biological approaches. Ecotoxicology and Environmental Safety, 284, 116883. https://doi.org/10.1016/j.ecoenv.2024.116883

Zhou, X., Yang, Y., Yin, Q., Zhang, X., & Li, M. (2021). Application potential of Comamonas testosteroni ZG2 for vegetable cultivation in nickel and cadmium polluted soil. Environmental Technology & Innovation, 23, 101626. https://doi.org/10.1016/j.eti.2021.101626

Zhu, Y., Wang, Y., He, X., Li, B., & Du, S. (2023). Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Chemosphere, 338, 139475. https://doi.org/10.1016/j.chemosphere.2023.139475

Refbacks

  • There are currently no refbacks.