Vermicomposting for climate change mitigation and sustainable soil health: Organic waste management, nitrogen use efficiency, and ecosystem services
Abstract
Environmental and agricultural systems are under constant threat from the ever-increasing amounts of eco-agricultural waste, which is the primary focus of this review. By utilizing scientific and environmentally friendly techniques to reuse and recycle organic waste, proper management can help reduce waste. This analysis assessed the potential of earthworm species in agriculture and the role of vermicompost in the long-term recycling of crop nutrients, specifically nitrogen (N) recovery, which is at 76%. Sustainable organic farming relies on a scientific understanding of organic material management and nitrogen use efficiency through the application of vermicompost. The emphasis is on reusing and recovering nutrients from vermicompost at carbon-to-nitrogen ratios of 10 - 23, which reduces emissions of reactive nitrogen gases, achieves soil fertility, and allows the application of fertilizers made from sustainable sources. Vermicompost improves the soil’s properties and mitigates the adverse effects of global warming. Based on literature reviews and numerous trials, a proposal has been put forth to emphasize the importance of vermicomposting technology in agroecosystems. Reducing pollution, improving waste management, and lowering health hazards are all significant issues that could play an important role. In conclusion, vermicompost is a win-win technology for sustaining today’s agricultural system. It enhances soil properties, increases land productivity, and reduces greenhouse gas emissions by decreasing chemical fertilizers.
Keywords
Full Text:
PDFReferences
Abad, Q., & Shafiqi, S. (2024). Vermicompost: Significance and Benefits for Agriculture. Journal for Research in Applied Sciences and Biotechnology, 3(2), 202-207. https://doi.org/10.55544/jrasb.3.2.36.
Adetunji, A. I., Oberholster, P. J., & Erasmus, M. (2023). From garbage to treasure: A review on biorefinery of organic solid wastes into valuable biobased products. Bioresource Technology Reports, 24, 101610. https://doi.org/10.1016/j.biteb.2023.101610.
Adomako, M. O., Xue, W., Roiloa, S., Zhang, Q., Du, D.-L., & Yu, F.-H. (2021). Earthworms Modulate Impacts of Soil Heterogeneity on Plant Growth at Different Spatial Scales. Frontiers in Plant Science, Volume 12 - 2021. https://doi.org/10.3389/fpls.2021.735495.
Ahamad, L., Bhat, A. H., Kumar, H., Rana, A., Hasan, M. N., Ahmed, I., . . . Ameen, F. (2023). From soil to plant: strengthening carrot defenses against Meloidogyne incognita with vermicompost and arbuscular mycorrhizal fungi biofertilizers [Original Research]. Frontiers in Microbiology, Volume 14 - 2023. https://doi.org/10.3389/fmicb.2023.1206217.
Ahmed, N., & Al-Mutairi, K. A. (2022). Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices. Sustainability, 14(13), 7803. https://doi.org/10.3390/su14137803.
Aira, M., Monroy, F., & Domínguez, J. (2007). Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Science of The Total Environment, 385(1), 252-261. https://doi.org/10.1016/j.scitotenv.2007.06.031.
Akhzari, D., Attaeian, B., Arami, A., Mahmoodi, F., & Aslani, F. (2015). Effects of Vermicompost and Arbuscular Mycorrhizal Fungi on Soil Properties and Growth of Medicago polymorpha L. Compost Science & Utilization, 23(3), 142-153. https://doi.org/10.1080/1065657X.2015.1013585.
Aksakal, E. L., Sari, S., & Angin, I. (2016). Effects of Vermicompost Application on Soil Aggregation and Certain Physical Properties. Land Degradation & Development, 27(4), 983-995. https://doi.org/10.1002/ldr.2350.
Al-Maamori, H. A., Salman, A. D., Al-Budeiri, M., Al-Shami, Y. A. O., & Al-shaabani, E. M. (2023). Effect of Vermicompost Production on some Soil Properties and Nutrients in Plants. IOP Conference Series: Earth and Environmental Science, 1214(1), 012006. https://doi.org/10.1088/1755-1315/1214/1/012006.
Alla Sharafi, G., Changizi, M., Rafiee, M., Gomarian, M., & Khagani, S. (2019). Investigating the Effect of Drought Stress and Vermicompost Biofertilizer on Morphological and Biochemical Characteristics of Thymus vulgaris L. Archives of Pharmacy Practice, 10(3), 137-145. https://doi.org/10.51847/p7zw1SaTtr.
Alli, S. A. (2023). A Comparison of Greywater Irrigation and Hydraulic Loading Rate on Growth and Treatment Performance With Various Ornamental Plants [Master's Dissertation, Hamad Bin Khalifa University (Qatar)].
Alshehrei, F., & Ameen, F. (2021). Vermicomposting: A management tool to mitigate solid waste. Saudi Journal of Biological Sciences, 28(6), 3284-3293. https://doi.org/10.1016/j.sjbs.2021.02.072.
Amalina, F., Razak, A. S. A., Krishnan, S., Sulaiman, H., Zularisam, A. W., & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. Journal of Hazardous Materials Advances, 7, 100134. https://doi.org/10.1016/j.hazadv.2022.100134.
Amaya-Gómez, C. V., Flórez-Martínez, D. H., Cayuela, M. L., & Tortosa, G. (2025). Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review. Applied Soil Ecology, 210, 106051. https://doi.org/10.1016/j.apsoil.2025.106051.
Arora, S., & Kazmi, A. A. (2015). The effect of seasonal temperature on pathogen removal efficacy of vermifilter for wastewater treatment. Water Research, 74, 88-99. https://doi.org/10.1016/j.watres.2015.02.001.
Arrázola-Vásquez, E., Larsbo, M., Capowiez, Y., Taylor, A., Sandin, M., Iseskog, D., & Keller, T. (2022). Earthworm burrowing modes and rates depend on earthworm species and soil mechanical resistance. Applied Soil Ecology, 178, 104568. https://doi.org/10.1016/j.apsoil.2022.104568.
Arumugam, K., Renganathan, S., Babalola, O. O., & Muthunarayanan, V. (2018). Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Management, 74, 185-193. https://doi.org/10.1016/j.wasman.2017.11.009.
Awogbemi, O., & Kallon, D. V. V. (2023). Application of biochar derived from crops residues for biofuel production. Fuel Communications, 15, 100088. https://doi.org/10.1016/j.jfueco.2023.100088.
Bhatt, R., Kunal, Moulick, D., Bárek, V., Brestic, M., Gaber, A., . . . Hossain, A. (2025). Sustainable strategies to limit nitrogen loss in agriculture through improving its use efficiency—aiming to reduce environmental pollution. Journal of Agriculture and Food Research, 22, 101957. https://doi.org/10.1016/j.jafr.2025.101957.
Bhunia, S., Bhowmik, A., Mallick, R., & Mukherjee, J. (2021). Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review. Agronomy, 11(5), 823. https://doi.org/10.3390/agronomy11050823.
Biruntha, M., Karmegam, N., Archana, J., Karunai Selvi, B., John Paul, J. A., Balamuralikrishnan, B., . . . Ravindran, B. (2020). Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresource Technology, 297, 122398. https://doi.org/10.1016/j.biortech.2019.122398.
Bora, S., Bisht, S. S., & Reynolds, J. W. (2021). Global diversity of earthworms in various countries and continents: a short review. Megadrilogica, 26(9), 127–154. https://megadrilogica.inhs.illinois.edu/volume-26-2020-2022/.
Cai, J., Bennie, J., & Gaston, K. J. (2025). Altered surface behaviour in earthworms (Lumbricus terrestris) under artificial light at night. Oecologia, 207(7), 114. https://doi.org/10.1007/s00442-025-05750-z.
Cai, S., Zhao, X., & Yan, X. (2025). Towards precise nitrogen fertilizer management for sustainable agriculture. Earth Critical Zone, 2, 100026. https://doi.org/10.1016/j.ecz.2025.100026.
Castellini, M., Bondì, C., Giglio, L., & Iovino, M. (2024). Impact of vermicompost addition on water availability of differently textured soils. Heliyon, 10(15), e35699. https://doi.org/10.1016/j.heliyon.2024.e35699.
Chen, Q., Song, Y., An, Y., Lu, Y., & Zhong, G. (2024). Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health. Diversity, 16(12), 734. https://doi.org/10.3390/d16120734.
Chen, Y., Zhang, Y., Shi, X., Xu, L., Zhang, L., & Zhang, L. (2022). The succession of GH6 cellulase-producing microbial communities and temporal profile of GH6 gene abundance during vermicomposting of maize stover and cow dung. Bioresource Technology, 344, 126242. https://doi.org/10.1016/j.biortech.2021.126242.
Chiba, A., Vitow, N., Baum, C., Zacher, A., Kahle, P., Leinweber, P., . . . Schulz, S. (2024). Earthworm activities change phosphorus mobilization and uptake strategies in deep soil layers. Applied Soil Ecology, 193, 105168. https://doi.org/10.1016/j.apsoil.2023.105168.
Chimanbhai Saypariya, D., Singh, D., Kumar Dikshit, A., & Dangi, M. B. (2024). Composting of organic fraction of municipal solid waste in a three-stage biodegradable composter. Heliyon, 10(17), e37444. https://doi.org/10.1016/j.heliyon.2024.e37444.
Clause, J., Barot, S., & Forey, E. (2016). Earthworms promote greater richness and abundance in the emergence of plant species across a grassland-forest ecotone. Journal of Plant Ecology, 9(6), 703-711. https://doi.org/10.1093/jpe/rtw008.
Colombi, G., Martani, E., & Fornara, D. (2025). Regenerative organic agriculture and soil ecosystem service delivery: A literature review. Ecosystem Services, 73, 101721. https://doi.org/10.1016/j.ecoser.2025.101721.
Cui, G., Fu, X., Bhat, S. A., Tian, W., Lei, X., Wei, Y., & Li, F. (2022). Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. Environmental Research, 207, 112654. https://doi.org/10.1016/j.envres.2021.112654.
Das, D., Abbhishek, K., Banik, P., & Swain, D. K. (2022). Comparative evaluation of changes in soil bio-chemical properties after application of traditional and enriched vermicompost. Environmental Technology & Innovation, 28, 102956. https://doi.org/10.1016/j.eti.2022.102956.
Demir, Z. (2019). Effects of Vermicompost on Soil Physicochemical Properties and Lettuce (Lactuca sativa Var. Crispa) Yield in Greenhouse under Different Soil Water Regimes. Communications in Soil Science and Plant Analysis, 50(17), 2151-2168. https://doi.org/10.1080/00103624.2019.1654508.
Demir, Z., & Kıran, S. (2020). Effect of Vermicompost on Macro and Micro Nutrients of Lettuce (Lactuca Sativa Var. Crispa) Under Salt Stress Conditions [Tuz Stresi Altında Vermikompost Uygulamasının Kıvırcık Salatada (Lactuca Sativa Var. Crispa) Makro ve Mikro Element İçerikleri Üzerine Etkisi]. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 33-43. https://doi.org/10.18016/ksutarimdoga.vi.579695.
Desie, E., Van Meerbeek, K., De Wandeler, H., Bruelheide, H., Domisch, T., Jaroszewicz, B., . . . Muys, B. (2020). Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Functional Ecology, 34(12), 2598-2610. https://doi.org/10.1111/1365-2435.13668.
Dinesh, G. K., Sharma, D. K., Jat, S. L., Sri, K. S. K., Bandyopadhyay, K. K., Bhatia, A., . . . Kumar, R. R. (2022). Ecological relationship of earthworms with soil physicochemical properties and crop yields in conservation agriculture. Indian Journal of Ecology, 49(6), 2135-2139. https://nationalagro.org/images/research-paper/2022-Ecological-Relationship-of-Earth-worms-with-Soil.pdf.
Doan, T. T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.-L., & Jouquet, P. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of The Total Environment, 514, 147-154. https://doi.org/10.1016/j.scitotenv.2015.02.005.
Domínguez, J., Aira, M., Crandall, K. A., & Pérez-Losada, M. (2021). Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge. Scientific Reports, 11(1), 15556. https://doi.org/10.1038/s41598-021-95099-z.
Domínguez, J., Aira, M., Kolbe, A. R., Gómez-Brandón, M., & Pérez-Losada, M. (2019). Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Scientific Reports, 9(1), 9657. https://doi.org/10.1038/s41598-019-46018-w.
Ducasse, V., Capowiez, Y., & Peigné, J. (2022). Vermicomposting of municipal solid waste as a possible lever for the development of sustainable agriculture. A review. Agronomy for Sustainable Development, 42(5), 89. https://doi.org/10.1007/s13593-022-00819-y.
Dume, B., Hanc, A., Svehla, P., Michal, P., Chane, A. D., & Nigussie, A. (2023). Composting and vermicomposting of sewage sludge at various C/N ratios: Technological feasibility and end-product quality. Ecotoxicology and Environmental Safety, 263, 115255. https://doi.org/10.1016/j.ecoenv.2023.115255.
Dume, B., Hanc, A., Svehla, P., Míchal, P., Chane, A. D., & Nigussie, A. (2021). Carbon Dioxide and Methane Emissions during the Composting and Vermicomposting of Sewage Sludge under the Effect of Different Proportions of Straw Pellets. Atmosphere, 12(11), 1380. https://doi.org/10.3390/atmos12111380.
Dume, B., Hanč, A., Švehla, P., Michal, P., Pospíšil, V., Grasserová, A., . . . Nigussie, A. (2023). Influence of earthworms on the behaviour of organic micropollutants in sewage sludge. Journal of Cleaner Production, 416, 137869. https://doi.org/10.1016/j.jclepro.2023.137869.
Edwards, C. A., & Arancon, N. Q. (2022a). Earthworm Diversity, Dispersal and Geographical Distribution. In Biology and Ecology of Earthworms (pp. 55-80). Springer US. https://doi.org/10.1007/978-0-387-74943-3_3
Edwards, C. A., & Arancon, N. Q. (2022b). Earthworm Morphology. In Biology and Ecology of Earthworms (pp. 1-31). Springer US. https://doi.org/10.1007/978-0-387-74943-3_1
Edwards, C. A., & Arancon, N. Q. (2022c). The Influence of Environmental Factors on Earthworms. In Biology and Ecology of Earthworms (pp. 191-232). Springer US. https://doi.org/10.1007/978-0-387-74943-3_7
Edwards, C. A., & Arancon, N. Q. (2022d). The Role of Earthworms in Organic Matter and Nutrient Cycles. In Biology and Ecology of Earthworms (pp. 233-274). Springer US. https://doi.org/10.1007/978-0-387-74943-3_8
Enebe, M. C., & Erasmus, M. (2023a). Mediators of biomass transformation – A focus on the enzyme composition of the vermicomposting process. Environmental Challenges, 12, 100732. https://doi.org/10.1016/j.envc.2023.100732.
Enebe, M. C., & Erasmus, M. (2023b). Vermicomposting technology - A perspective on vermicompost production technologies, limitations and prospects. Journal of Environmental Management, 345, 118585. https://doi.org/10.1016/j.jenvman.2023.118585.
Farooqi, Z. U. R., Qadir, A. A., Khalid, S., Murtaza, G., Ashraf, M. N., Shafeeq ur, R., . . . Xu, M. (2024). Greenhouse gas emissions, carbon stocks and wheat productivity following biochar, compost and vermicompost amendments: comparison of non-saline and salt-affected soils. Scientific Reports, 14(1), 7752. https://doi.org/10.1038/s41598-024-56381-y.
Ferraz Ramos, R., Almeida Santana, N., de Andrade, N., Scheffer Romagna, I., Tirloni, B., de Oliveira Silveira, A., . . . Josemar Seminoti Jacques, R. (2022). Vermicomposting of cow manure: Effect of time on earthworm biomass and chemical, physical, and biological properties of vermicompost. Bioresource Technology, 345, 126572. https://doi.org/10.1016/j.biortech.2021.126572.
Fitriani, T., Pangaribuan, D. H., Niswati, A., & Yusnaini, S. (2020). Improving nitrogen fertilizer efficiency with the addition of compost extracts to kailan (Brassica oleracea L.) plants with wick hydroponic cultivation. Sains Tanah Journal of Soil Science and Agroclimatology, 17(2), 7. https://doi.org/10.20961/stjssa.v17i2.41370.
Forey, O., Sauze, J., Piel, C., Gritti, E. S., Devidal, S., Faez, A., . . . Milcu, A. (2023). Earthworms do not increase greenhouse gas emissions (CO2 and N2O) in an ecotron experiment simulating a three-crop rotation system. Scientific Reports, 13(1), 21920. https://doi.org/10.1038/s41598-023-48765-3.
Fu, J., Zhou, X., He, Y., Liu, R., Yao, Y., Zhou, G., . . . Bai, S. H. (2023). Co-application of biochar and organic amendments on soil greenhouse gas emissions: A meta-analysis. Science of The Total Environment, 897, 166171. https://doi.org/10.1016/j.scitotenv.2023.166171.
Gabur, G.-D., Teodosiu, C., Fighir, D., Cotea, V. V., & Gabur, I. (2024). From Waste to Value in Circular Economy: Valorizing Grape Pomace Waste through Vermicomposting. Agriculture, 14(9), 1529. https://doi.org/10.3390/agriculture14091529.
Ganapathy, N. R. V., Elango, A. C., Balaji, G., Sankaranarayanan, M., & Sharma, M. (2025). A comprehensive review of earthworm-derived vermiproducts and their role in sustainable agriculture. Discover Applied Sciences, 7(9), 995. https://doi.org/10.1007/s42452-025-07614-w.
Gao, F., Li, H., Mu, X., Gao, H., Zhang, Y., Li, R., . . . Ye, L. (2023). Effects of Organic Fertilizer Application on Tomato Yield and Quality: A Meta-Analysis. Applied Sciences, 13(4), 2184. https://doi.org/10.3390/app13042184.
García-Sánchez, M., & Száková, J. (2016). Chapter 12 - Biological Remediation of Mercury-Polluted Environments. In P. Ahmad (Ed.), Plant Metal Interaction (pp. 311-334). Elsevier. https://doi.org/10.1016/B978-0-12-803158-2.00012-6
Garg, A. K., Kaushal, R., Rana, V. S., & Singh, P. (2023). Assessment of Yield, Quality and Economics of Kiwifruit (Actinidia deliciosa cv. Allison) Production as Influenced by Integrated Nitrogen Management Strategies in Indian Lower Himalayas. Journal of Soil Science and Plant Nutrition, 23(4), 5642-5660. https://doi.org/10.1007/s42729-023-01429-7.
Ghaffari, H., Tadayon, M. R., Bahador, M., & Razmjoo, J. (2022). Biochemical and yield response of sugar beet to drought stress and foliar application of vermicompost tea. Plant Stress, 5, 100087. https://doi.org/10.1016/j.stress.2022.100087.
Ghandehari Yazdi, F., Mokhtari, M., Nabi Meibodi, M., Sefidkar, R., Hatami, B., Molavi, F., . . . Ebrahimi, A. A. (2024). Bioconversion of cow manure through vermicomposting: effects of tylosin concentration on the weight of worms and manure quality. Scientific Reports, 14(1), 12575. https://doi.org/10.1038/s41598-024-62839-w.
Gudeta, K., Julka, J. M., Kumar, A., Bhagat, A., & Kumari, A. (2021). Vermiwash: An agent of disease and pest control in soil, a review. Heliyon, 7(3), e06434. https://doi.org/10.1016/j.heliyon.2021.e06434.
Guo, H., & Li, S. (2024). A Review of Drip Irrigation’s Effect on Water, Carbon Fluxes, and Crop Growth in Farmland. Water, 16(15), 2206. https://doi.org/10.3390/w16152206.
Guo, L., Wu, G., Li, C., Liu, W., Yu, X., Cheng, D., & Jiang, G. (2015). Vermicomposting with maize increases agricultural benefits by 304 %. Agronomy for Sustainable Development, 35(3), 1149-1155. https://doi.org/10.1007/s13593-015-0307-0.
Guo, S., Pan, J., Zhai, L., Khoshnevisan, B., Wu, S., Wang, H., . . . Lei, B. (2020). The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain. Science of The Total Environment, 720, 137558. https://doi.org/10.1016/j.scitotenv.2020.137558.
Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. Environmental Challenges, 13, 100747. https://doi.org/10.1016/j.envc.2023.100747.
Hallam, J., & Hodson, M. E. (2022). Earthworms and soil water regulation: A review. African and Mediterranean Agricultural Journal - Al Awamia(130), 89-135. https://doi.org/10.34874/IMIST.PRSM/afrimed-i130.31381.
Hanc, A., & Vasak, F. (2015). Processing separated digestate by vermicomposting technology using earthworms of the genus Eisenia. International Journal of Environmental Science and Technology, 12(4), 1183-1190. https://doi.org/10.1007/s13762-014-0500-8.
Hodson, M. E., Brailey-Crane, P., Burn, W. L., Harper, A. L., Hartley, S. E., Helgason, T., & Walker, H. F. (2023). Enhanced plant growth in the presence of earthworms correlates with changes in soil microbiota but not nutrient availability. Geoderma, 433, 116426. https://doi.org/10.1016/j.geoderma.2023.116426.
Hossain, M. L., Shapna, K. J., Li, J., Kabir, M. H., Siddika, F., Khandker, S., & Beierkuhnlein, C. (2025). Transforming agriculture with vermicompost: 7-year empirical evidence from drought-prone and salinization-affected regions of Bangladesh. Journal of Cleaner Production, 508, 145595. https://doi.org/10.1016/j.jclepro.2025.145595.
Ibrahim, M. M., Mahmoud, E. K., & Ibrahim, D. A. (2015). Effects of vermicompost and water treatment residuals on soil physical properties and wheat yield. International Agrophysics, 29(2), 157. https://doi.org/10.1515/intag-2015-0029.
Iwuozor, K. O., Emenike, E. C., Omonayin, E. O., Bamigbola, J. O., Ojo, H. T., Awoyale, A. A., . . . Adeniyi, A. G. (2023). Unlocking the hidden value of pods: A review of thermochemical conversion processes for biochar production. Bioresource Technology Reports, 22, 101488. https://doi.org/10.1016/j.biteb.2023.101488.
Jiang, X., Lu, C., Hu, R., Shi, W., Zhou, L., Wen, P., . . . Lo, Y. M. (2023). Nutritional and microbiological effects of vermicompost tea in hydroponic cultivation of maple peas (Pisum sativum var. arvense L.). Food Science & Nutrition, 11(6), 3184-3202. https://doi.org/10.1002/fsn3.3299.
John, K., Janz, B., Kiese, R., Wassmann, R., Zaitsev, A. S., & Wolters, V. (2020). Earthworms offset straw-induced increase of greenhouse gas emission in upland rice production. Science of The Total Environment, 710, 136352. https://doi.org/10.1016/j.scitotenv.2019.136352.
Katiyar, R. B., Sundaramurthy, S., Sharma, A. K., Arisutha, S., Khan, M. A., & Sillanpää, M. (2023). Optimization of Engineering and Process Parameters for Vermicomposting. Sustainability, 15(10), 8090. https://doi.org/10.3390/su15108090.
Kauser, H., & Khwairakpam, M. (2022). Organic waste management by two-stage composting process to decrease the time required for vermicomposting. Environmental Technology & Innovation, 25, 102193. https://doi.org/10.1016/j.eti.2021.102193.
Kavassilas, Z., Mittmannsgruber, M., Gruber, E., & Zaller, J. G. (2024). Artificial Light at Night Reduces the Surface Activity of Earthworms, Increases the Growth of a Cover Crop and Reduces Water Leaching. Land, 13(10), 1698. https://doi.org/10.3390/land13101698.
Kazimierski, P., Hercel, P., Suchocki, T., Smoliński, J., Pladzyk, A., Kardaś, D., . . . Januszewicz, K. (2021). Pyrolysis of Pruning Residues from Various Types of Orchards and Pretreatment for Energetic Use of Biochar. Materials, 14(11), 2969. https://doi.org/10.3390/ma14112969.
Khan, M. T., Aleinikovienė, J., & Butkevičienė, L.-M. (2024). Innovative Organic Fertilizers and Cover Crops: Perspectives for Sustainable Agriculture in the Era of Climate Change and Organic Agriculture. Agronomy, 14(12), 2871. https://doi.org/10.3390/agronomy14122871.
Khatua, C., Sengupta, S., Krishna Balla, V., Kundu, B., Chakraborti, A., & Tripathi, S. (2018). Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Management, 79, 287-295. https://doi.org/10.1016/j.wasman.2018.07.043.
Klein, A., Eisenhauer, N., & Schaefer, I. (2020). Invasive lumbricid earthworms in North America—Different life histories but common dispersal? Journal of Biogeography, 47(3), 674-685. https://doi.org/10.1111/jbi.13744.
Kolbe, A. R., Aira, M., Gómez-Brandón, M., Pérez-Losada, M., & Domínguez, J. (2019). Bacterial succession and functional diversity during vermicomposting of the white grape marc Vitis vinifera v. Albariño. Scientific Reports, 9(1), 7472. https://doi.org/10.1038/s41598-019-43907-y.
Komakech, A. J., Zurbrügg, C., Miito, G. J., Wanyama, J., & Vinnerås, B. (2016). Environmental impact from vermicomposting of organic waste in Kampala, Uganda. Journal of Environmental Management, 181, 395-402. https://doi.org/10.1016/j.jenvman.2016.06.028.
Kumar, M., Chaudhary, V., Chaudhary, V., Kumar, R., Kaushik, K., Bhatt, R., . . . Hossain, A. (2025). Microbial enriched vermicompost efficiently substitutes soil nutrients, microbial populations and enzymatic activity for the growth and yield of tuberose (Agave amica Medik.) cv. Single. Folia Microbiologica. https://doi.org/10.1007/s12223-025-01325-w.
Kumar, N. V., Pallavi, K. N., Rajput, P., Bhargavi, B., Chandra, M. S., Chandana, P., . . . Rajput, V. D. (2025). Nano-Biochar: A promising tool for sustainable agriculture under climate change era. Sains Tanah Journal of Soil Science and Agroclimatology, 22(1), 18. https://doi.org/10.20961/stjssa.v22i1.100809.
Kumar, R., yadav, r., Yodha, K., Gupta, R. K., Kumar Kataria, S., Kadyan, P., . . . Kaur, S. (2023). The Earthworms: Charles Darwin’s Ecosystem Engineer. In K. R. Hakeem (Ed.), Organic Fertilizers - New Advances and Applications. IntechOpen. https://doi.org/10.5772/intechopen.1001339
Lavelle, P., & Spain, A. V. (2024). Earthworms as Soil Ecosystem Engineers. In Y. Kooch & Y. Kuzyakov (Eds.), Earthworms and Ecological Processes (pp. 455-483). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64510-5_18
Lee, S., Choi, J., Jho, E. H., & Shin, S. (2024). Effects of polyvinyl chloride and low-density polyethylene microplastics on oxidative stress and mitochondria function of earthworm (Eisenia fetida). Ecotoxicology and Environmental Safety, 283, 116847. https://doi.org/10.1016/j.ecoenv.2024.116847.
Lei, X., Cui, G., Sun, H., Hou, S., Deng, H., Li, B., . . . Cai, J. (2024). How do earthworms affect the pathway of sludge bio-stabilization via vermicomposting? Science of The Total Environment, 916, 170411. https://doi.org/10.1016/j.scitotenv.2024.170411.
Lim, S. L., Lee, L. H., & Wu, T. Y. (2016). Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production, 111, 262-278. https://doi.org/10.1016/j.jclepro.2015.08.083.
Lu, M., Liu, W., Fan, L., & Wu, H. (2025). Earthworms regulate the response of greenhouse gas emissions in wetland soils to simulated warming and flooding. Applied Soil Ecology, 210, 106074. https://doi.org/10.1016/j.apsoil.2025.106074.
Lubbers, I. M., van Groenigen, K. J., Fonte, S. J., Six, J., Brussaard, L., & van Groenigen, J. W. (2013). Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change, 3(3), 187-194. https://doi.org/10.1038/nclimate1692.
Ma, H., Zhao, S., Hou, J., Feyissa, T., Duan, Z., Pan, Z., . . . Zhang, W. (2022). Vermicompost Improves Physicochemical Properties of Growing Medium and Promotes Plant Growth: a Meta-analysis. Journal of Soil Science and Plant Nutrition, 22(3), 3745-3755. https://doi.org/10.1007/s42729-022-00924-7.
Ma, S., Xiong, J., Cui, R., Sun, X., Han, L., Xu, Y., . . . Huang, G. (2020). Effects of intermittent aeration on greenhouse gas emissions and bacterial community succession during large-scale membrane-covered aerobic composting. Journal of Cleaner Production, 266, 121551. https://doi.org/10.1016/j.jclepro.2020.121551.
Mago, M., Yadav, A., Gupta, R., & Garg, V. K. (2021). Management of banana crop waste biomass using vermicomposting technology. Bioresource Technology, 326, 124742. https://doi.org/10.1016/j.biortech.2021.124742.
Malal, H., Romero, V. S., Horwath, W. R., Dore, S., Beckett, P., Ait Hamza, M., . . . Lazcano, C. (2024). Vermifiltration and sustainable agriculture: unveiling the soil health-boosting potential of liquid waste vermicompost [Original Research]. Frontiers in Sustainable Food Systems, Volume 8 - 2024. https://doi.org/10.3389/fsufs.2024.1383715.
Mannina, G., Bosco Mofatto, P. M., Cosenza, A., Di Trapani, D., Gulhan, H., Mineo, A., & Makinia, J. (2024). The effect of aeration mode (intermittent vs. continuous) on nutrient removal and greenhouse gas emissions in the wastewater treatment plant of Corleone (Italy). Science of The Total Environment, 924, 171420. https://doi.org/10.1016/j.scitotenv.2024.171420.
Manzoor, A., Naveed, M. S., Ali, R. M. A., Naseer, M. A., Ul-Hussan, M., Saqib, M., . . . Farooq, M. (2024). Vermicompost: A potential organic fertilizer for sustainable vegetable cultivation. Scientia Horticulturae, 336, 113443. https://doi.org/10.1016/j.scienta.2024.113443.
Maslov, M., Astaykina, A., & Pozdnyakov, L. (2022). Earthworm Lumbricus terrestris Contributes Nitrous Oxide Emission from Temperate Agricultural Soil Regardless of Applied Mineral Nitrogen Fertilizer Doses. Agronomy, 12(11), 2745. https://doi.org/10.3390/agronomy12112745.
Medina-Sauza, R. M., Álvarez-Jiménez, M., Delhal, A., Reverchon, F., Blouin, M., Guerrero-Analco, J. A., . . . Barois, I. (2019). Earthworms Building Up Soil Microbiota, a Review [Systematic Review]. Frontiers in Environmental Science, Volume 7 - 2019. https://doi.org/10.3389/fenvs.2019.00081.
Mittmannsgruber, M., Kavassilas, Z., Spangl, B., Gruber, E., Jagg, E., & Zaller, J. G. (2024). Artificial light at night reduces earthworm activity but increases growth of invasive ragweed. BMC Ecology and Evolution, 24(1), 10. https://doi.org/10.1186/s12862-024-02200-x.
Mogollón, J. M., Lassaletta, L., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H., & Bouwman, A. F. (2018). Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environmental Research Letters, 13(4), 044008. https://doi.org/10.1088/1748-9326/aab212.
Mohite, D. D., Chavan, S. S., Jadhav, V. S., Kanase, T., Kadam, M. A., & Singh, A. S. (2024). Vermicomposting: a holistic approach for sustainable crop production, nutrient-rich bio fertilizer, and environmental restoration. Discover Sustainability, 5(1), 60. https://doi.org/10.1007/s43621-024-00245-y.
Mupambwa, H. A., & Mnkeni, P. N. S. (2018). Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review. Environmental Science and Pollution Research, 25(11), 10577-10595. https://doi.org/10.1007/s11356-018-1328-4.
Mupondi, L. T., Mnkeni, P. N. S., Muchaonyerwa, P., & Mupambwa, H. A. (2018). Vermicomposting manure-paper mixture with igneous rock phosphate enhances biodegradation, phosphorus bioavailability and reduces heavy metal concentrations. Heliyon, 4(8), e00749. https://doi.org/10.1016/j.heliyon.2018.e00749.
Ndegwa, P. M., & Thompson, S. A. (2000). Effects of C-to-N ratio on vermicomposting of biosolids. Bioresource Technology, 75(1), 7-12. https://doi.org/10.1016/S0960-8524(00)00038-9.
Ndoung, O. C. N., Figueiredo, C. C. d., & Ramos, M. L. G. (2021). A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon, 7(12), e08473. https://doi.org/10.1016/j.heliyon.2021.e08473.
Nigussie, A., Bruun, S., de Neergaard, A., & Kuyper, T. W. (2017). Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting. Waste Management, 62, 43-51. https://doi.org/10.1016/j.wasman.2017.02.009.
Nigussie, A., Kuyper, T. W., Bruun, S., & de Neergaard, A. (2016). Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. Journal of Cleaner Production, 139, 429-439. https://doi.org/10.1016/j.jclepro.2016.08.058.
Nordahl, S. L., Preble, C. V., Kirchstetter, T. W., & Scown, C. D. (2023). Greenhouse Gas and Air Pollutant Emissions from Composting. Environmental Science & Technology, 57(6), 2235-2247. https://doi.org/10.1021/acs.est.2c05846.
Oo, A. N., Iwai, C. B., & Saenjan, P. (2015). Soil Properties and Maize Growth in Saline and Nonsaline Soils using Cassava-Industrial Waste Compost and Vermicompost with or Without Earthworms. Land Degradation & Development, 26(3), 300-310. https://doi.org/10.1002/ldr.2208.
Oyege, I., & Balaji Bhaskar, M. S. (2023). Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture. Soil Systems, 7(4), 101. https://doi.org/10.3390/soilsystems7040101.
Panda, A. K., Mishra, R., Dutta, J., Wani, Z. A., Pant, S., Siddiqui, S., . . . Bisht, S. S. (2022). Impact of Vermicomposting on Greenhouse Gas Emission: A Short Review. Sustainability, 14(18), 11306. https://doi.org/10.3390/su141811306.
Pasha, M. R., Shahedi, K., Vahabzadeh, Q., Kavian, A., Sepanlou, M. G., & Jouquet, P. (2020). Effect of Vermicompost on Soil and Runoff Properties in Northern Iran. Compost Science & Utilization, 28(3-4), 129-135. https://doi.org/10.1080/1065657X.2020.1828198.
Pathma, J., & Sakthivel, N. (2013). Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Applied Soil Ecology, 70, 33-47. https://doi.org/10.1016/j.apsoil.2013.03.011.
Paul, S., Dinesh Kumar, S. M., Syamala, S. S., Balakrishnan, S., Vijayan, V., Arumugaswami, V., & Sudhakar, S. (2022). Identification, tissue specific expression analysis and functional characterization of arrestin gene (ARRDC) in the earthworm Eudrilus eugeniae: a molecular hypothesis behind worm photoreception. Molecular Biology Reports, 49(6), 4225-4236. https://doi.org/10.1007/s11033-022-07256-w.
Peng, L., Tang, R., Wang, G., Ma, R., Li, Y., Li, G., & Yuan, J. (2023). Effect of aeration rate, aeration pattern, and turning frequency on maturity and gaseous emissions during kitchen waste composting. Environmental Technology & Innovation, 29, 102997. https://doi.org/10.1016/j.eti.2022.102997.
Pirsaheb, M., Khosravi, T., & Sharafi, K. (2013). Domestic scale vermicomposting for solid waste management. International Journal of Recycling of Organic Waste in Agriculture, 2(1). https://doi.org/10.1186/2251-7715-2-4.
Pizzanelli, S., Calucci, L., Forte, C., & Borsacchi, S. (2023). Studies of Organic Matter in Composting, Vermicomposting, and Anaerobic Digestion by 13C Solid-State NMR Spectroscopy. Applied Sciences, 13(5), 2900. https://doi.org/10.3390/app13052900.
Poblete, R., Cortes, E., & Munizaga-Plaza, J. A. (2022). Carbon dioxide emission control of a vermicompost process using fly ash. Science of The Total Environment, 803, 150069. https://doi.org/10.1016/j.scitotenv.2021.150069.
Pooja, Sharma, M., Mehla, A., Mehla, O., Singh, D., Singh, A., & Verma, S. (2022). Vermicompost effect on soil and field crops: a review. Pharm. Innov, 2022(11), 2565-2569. https://doi.org/10.22271/tpi.2022.v11.i11ae.17113.
Poornima, S., Dadi, M., Subash, S., Manikandan, S., Karthik, V., Deena, S. R., . . . Subbaiya, R. (2024). Review on advances in toxic pollutants remediation by solid waste composting and vermicomposting. Scientific African, 23, e02100. https://doi.org/10.1016/j.sciaf.2024.e02100.
Prendergast-Miller, M. T., Jones, D. T., Berdeni, D., Bird, S., Chapman, P. J., Firbank, L., . . . Hodson, M. E. (2021). Arable fields as potential reservoirs of biodiversity: Earthworm populations increase in new leys. Science of The Total Environment, 789, 147880. https://doi.org/10.1016/j.scitotenv.2021.147880.
Przemieniecki, S. W., Zapałowska, A., Skwiercz, A., Damszel, M., Telesiński, A., Sierota, Z., & Gorczyca, A. (2021). An evaluation of selected chemical, biochemical, and biological parameters of soil enriched with vermicompost. Environmental Science and Pollution Research, 28(7), 8117-8127. https://doi.org/10.1007/s11356-020-10981-z.
Ratsiatosika, O., Trap, J., Herinasandratra, V., Razafimbelo, T., Bernard, L., & Blanchart, E. (2024). Earthworms enhance the performance of organic amendments in improving rice growth and nutrition in poor ferralsols. Soil Biology and Biochemistry, 195, 109477. https://doi.org/10.1016/j.soilbio.2024.109477.
Ravindran, B., & Mnkeni, P. N. S. (2016). Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida. Environmental Science and Pollution Research, 23(17), 16965-16976. https://doi.org/10.1007/s11356-016-6873-0.
Ravindran, B., Wong, J. W. C., Selvam, A., & Sekaran, G. (2016). Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresource Technology, 217, 200-204. https://doi.org/10.1016/j.biortech.2016.03.032.
Raza, S. T., Rong, L., Rene, E. R., Ali, Z., Iqbal, H., Sahito, Z. A., & Chen, Z. (2024). Effects of vermicompost preparation and application on waste recycling, NH3, and N2O emissions: A systematic review on vermicomposting. Environmental Technology & Innovation, 35, 103722. https://doi.org/10.1016/j.eti.2024.103722.
Raza, S. T., Wu, J., Rene, E. R., Ali, Z., & Chen, Z. (2022). Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. Journal of Cleaner Production, 360, 132200. https://doi.org/10.1016/j.jclepro.2022.132200.
Regasa, A., Haile, W., & Abera, G. (2025). Effects of lime and vermicompost application on soil physicochemical properties and phosphorus availability in acidic soils. Scientific Reports, 15(1), 25544. https://doi.org/10.1038/s41598-025-02053-4.
Rehman, S. u., De Castro, F., Aprile, A., Benedetti, M., & Fanizzi, F. P. (2023). Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy, 13(4), 1134. https://doi.org/10.3390/agronomy13041134.
Rini, J., Deepthi, M. P., Saminathan, K., Narendhirakannan, R. T., Karmegam, N., & Kathireswari, P. (2020). Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresource Technology, 313, 123690. https://doi.org/10.1016/j.biortech.2020.123690.
Robatjazi, J. (2023). An overview on vermicompost environmental impacts (From past to future). Journal of Agricultural Science and Food Research, 14(4), 1-10. https://www.longdom.org/open-access/an-overview-on-vermicompost-environmental-impacts-from-past-to-future-103775.html#ai.
Romero, E., Castillo, J. M., & Nogales, R. (2024). Field-scale assessment of vermicompost amendments for diuron-contaminated soil: Implications for soil quality and pesticide fate. Applied Soil Ecology, 201, 105516. https://doi.org/10.1016/j.apsoil.2024.105516.
Safadoust, A., Azimi, S. B., & Dehghan, M. B. (2025). Restoring soil functionality in drylands: Soil texture-specific impacts of vermicompost as an organic waste-based amendment. Journal of Arid Environments, 231, 105446. https://doi.org/10.1016/j.jaridenv.2025.105446.
Saha, P., Barman, A., & Bera, A. (2022). Vermicomposting: A Step towards Sustainability. In V. S. Meena, M. Choudhary, R. P. Yadav, & S. Kumari Meena (Eds.), Sustainable Crop Production - Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.102641
Samal, K., Raj Mohan, A., Chaudhary, N., & Moulick, S. (2019). Application of vermitechnology in waste management: A review on mechanism and performance. Journal of Environmental Chemical Engineering, 7(5), 103392. https://doi.org/10.1016/j.jece.2019.103392.
Santana, N. A., Jacques, R. J. S., Antoniolli, Z. I., Martínez-Cordeiro, H., & Domínguez, J. (2020). Changes in the chemical and biological characteristics of grape marc vermicompost during a two-year production period. Applied Soil Ecology, 154, 103587. https://doi.org/10.1016/j.apsoil.2020.103587.
Santolin, J., Larsen, O. C., Fritze, A., Xue, B., Yang, Z., & Rotter, V. S. (2024). Reaching China’s fertilizer reduction goals through nitrogen and phosphorus recovery: a substance flow analysis case study. Journal of Material Cycles and Waste Management, 26(6), 3650-3664. https://doi.org/10.1007/s10163-024-02067-6.
Shafique, I., Andleeb, S., Naeem, F., Ali, S., Tabassam, T., Sultan, T., & Almas Abbasi, M. (2023). Cow dung putrefaction via vermicomposting using Eisenia fetida and its influence on seed sprouting and vegetative growth of Viola wittrockiana (pansy). PLOS ONE, 18(2), e0279828. https://doi.org/10.1371/journal.pone.0279828.
Shamsuddoha, M., & Nasir, T. (2024). Utilizing Dairy Waste Processing for Organic Agricultural Production: A Sustainable Approach to Producing Organic Goods. Processes, 12(11), 2521. https://doi.org/10.3390/pr12112521.
Sharma, D., Tomar, S., & Chakraborty, D. (2017). Role of earthworm in improving soil structure and functioning. Current Science, 113(6), 1064-1071. https://doi.org/10.18520/cs/v113/i06/1064-1071.
Sheer, A., Fahad Sardar, M., Younas, F., Zhu, P., Noreen, S., Mehmood, T., . . . Guo, W. (2024). Trends and social aspects in the management and conversion of agricultural residues into valuable resources: A comprehensive approach to counter environmental degradation, food security, and climate change. Bioresource Technology, 394, 130258. https://doi.org/10.1016/j.biortech.2023.130258.
Singh, A., Karmegam, N., Singh, G. S., Bhadauria, T., Chang, S. W., Awasthi, M. K., . . . Ravindran, B. (2020). Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environmental Geochemistry and Health, 42(6), 1617-1642. https://doi.org/10.1007/s10653-019-00510-4.
Singh, J., Schädler, M., Demetrio, W., Brown, G. G., & Eisenhauer, N. (2019). Climate change effects on earthworms - a review. Soil Organisms, 91(3), 113–137. https://doi.org/10.25674/so91iss3pp114.
Singh, R., Singh, R., Soni, S. K., Singh, S. P., Chauhan, U. K., & Kalra, A. (2013). Vermicompost from biodegraded distillation waste improves soil properties and essential oil yield of Pogostemon cablin (patchouli) Benth. Applied Soil Ecology, 70, 48-56. https://doi.org/10.1016/j.apsoil.2013.04.007.
Singh, S., & Sinha, R. K. (2022). 7 - Vermicomposting of organic wastes by earthworms: Making wealth from waste by converting ‘garbage into gold’ for farmers. In C. Hussain & S. Hait (Eds.), Advanced Organic Waste Management (pp. 93-120). Elsevier. https://doi.org/10.1016/B978-0-323-85792-5.00004-6
Singh, T. H. D., Swaroop, N., Thomas, T., & David, A. A. (2017). Effect of different levels of vermicompost on soil physical properties of two cultivars of cabbage (Brassica oleracea L.) under Eastern UP (India) conditions. International Journal of Current Microbiology and Applied Sciences, 6(6), 2908-2911. https://doi.org/10.20546/ijcmas.2017.606.344.
Srivastava, P. K., Gupta, M., Shikha, Singh, N., & Tewari, S. K. (2016). Amelioration of Sodic Soil for Wheat Cultivation Using Bioaugmented Organic Soil Amendment. Land Degradation & Development, 27(4), 1245-1254. https://doi.org/10.1002/ldr.2292.
Šrut, M., Menke, S., Höckner, M., & Sommer, S. (2019). Earthworms and cadmium – Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicology and Environmental Safety, 171, 843-853. https://doi.org/10.1016/j.ecoenv.2018.12.102.
Sudkolai, S. T., & Nourbakhsh, F. (2017). Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts. Waste Management, 64, 63-66. https://doi.org/10.1016/j.wasman.2017.03.011.
Tavali, I. E., & Ok, H. (2022). Comparison of Heat-Treated and Unheated Vermicompost on Biological Properties of Calcareous Soil and Aloe Vera Growth under Greenhouse Conditions in a Mediterranean Climate. Agronomy, 12(11), 2649. https://doi.org/10.3390/agronomy12112649.
Thomas, E., Prabha, V. S., Kurien, V. T., & Thomas, A. (2020). The potential of earthworms in soil carbon storage: a review. Environmental & Experimental Biology, 18(2), 61-75. https://doi.org/10.22364/eeb.18.06.
Tian, M., Yu, R., Guo, S., Yang, W., Liu, S., Du, H., . . . Zhang, X. (2024). Effect of Vermicompost Application on the Soil Microbial Community Structure and Fruit Quality in Melon (Cucumis melo). Agronomy, 14(11), 2536. https://doi.org/10.3390/agronomy14112536.
Urmi, T. A., Rahman, M. M., Islam, M. M., Islam, M. A., Jahan, N. A., Mia, M. A. B., . . . Kalaji, H. M. (2022). Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration. Plants, 11(1), 138. https://doi.org/10.3390/plants11010138.
Usta, A. N., & Guven, H. (2024). Vermicomposting organic waste with Eisenia fetida using a continuous flow-through reactor: Investigating five distinct waste mixtures. Journal of Environmental Chemical Engineering, 12(6), 114384. https://doi.org/10.1016/j.jece.2024.114384.
Vambe, M., Coopoosamy, R. M., Arthur, G., & Naidoo, K. (2023). Potential role of vermicompost and its extracts in alleviating climatic impacts on crop production. Journal of Agriculture and Food Research, 12, 100585. https://doi.org/10.1016/j.jafr.2023.100585.
van den Broek, S., Nybom, I., Hartmann, M., Doetterl, S., & Garland, G. (2024). Opportunities and challenges of using human excreta-derived fertilizers in agriculture: A review of suitability, environmental impact and societal acceptance. Science of The Total Environment, 957, 177306. https://doi.org/10.1016/j.scitotenv.2024.177306.
Van Groenigen, J. W., Van Groenigen, K. J., Koopmans, G. F., Stokkermans, L., Vos, H. M. J., & Lubbers, I. M. (2019). How fertile are earthworm casts? A meta-analysis. Geoderma, 338, 525-535. https://doi.org/10.1016/j.geoderma.2018.11.001.
Vasu, D., Tiwary, P., & Chandran, P. (2024). A novel and comprehensive soil quality index integrating soil morphological, physical, chemical, and biological properties. Soil and Tillage Research, 244, 106246. https://doi.org/10.1016/j.still.2024.106246.
Vennela, S. S., Manohari, V. A., Sindhu, N., Josphine, D. H., Mahitha, A., & Abhiroop, S. A. (2024). Assessment of effect of vermicompost on black gram (Vigna mungo L.) productivity. International Journal of Innovative Research, 10(2), 209-212. https://ijirt.org/article?manuscript=162318.
Vuković, A., Velki, M., Ečimović, S., Vuković, R., Štolfa Čamagajevac, I., & Lončarić, Z. (2021). Vermicomposting—Facts, Benefits and Knowledge Gaps. Agronomy, 11(10), 1952. https://doi.org/10.3390/agronomy11101952.
Vyas, P., Sharma, S., & Gupta, J. (2022). Vermicomposting with microbial amendment: Implications for bioremediation of industrial and agricultural waste [journal article]. BioTechnologia, 103(2), 203-215. https://doi.org/10.5114/bta.2022.116213.
Wang, F., Wang, X., & Song, N. (2021). Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agriculture, Ecosystems & Environment, 315, 107425. https://doi.org/10.1016/j.agee.2021.107425.
Wang, K., & Tester, J. W. (2023). Sustainable management of unavoidable biomass wastes. Green Energy and Resources, 1(1), 100005. https://doi.org/10.1016/j.gerr.2023.100005.
Wang, X.-X., Zhao, F., Zhang, G., Zhang, Y., & Yang, L. (2017). Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study [Original Research]. Frontiers in Plant Science, Volume 8 - 2017. https://doi.org/10.3389/fpls.2017.01978.
Wang, X. (2022). Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land, 11(4), 484. https://doi.org/10.3390/land11040484.
Wang, X., Zhu, H., Yan, B., Chen, L., Shutes, B., Wang, M., . . . Zhang, F. (2023). Ammonia volatilization, greenhouse gas emissions and microbiological mechanisms following the application of nitrogen fertilizers in a saline-alkali paddy ecosystem. Geoderma, 433, 116460. https://doi.org/10.1016/j.geoderma.2023.116460.
Wang, Z., Chen, Z., Niu, Y., Ren, P., & Hao, M. (2021). Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. Ecotoxicology and Environmental Safety, 214, 111994. https://doi.org/10.1016/j.ecoenv.2021.111994.
Wongkiew, S., Polprasert, C., Noophan, P., Koottatep, T., Kanokkantapong, V., Surendra, K. C., & Khanal, S. K. (2023). Effects of vermicompost leachate on nitrogen, phosphorus, and microbiome in a food waste bioponic system. Journal of Environmental Management, 339, 117860. https://doi.org/10.1016/j.jenvman.2023.117860.
Wu, D., Feng, Y., Xue, L., Liu, M., Yang, B., Hu, F., & Yang, L. (2019). Biochar Combined with Vermicompost Increases Crop Production While Reducing Ammonia and Nitrous Oxide Emissions from a Paddy Soil. Pedosphere, 29(1), 82-94. https://doi.org/10.1016/S1002-0160(18)60050-5.
Xu, C., & Mou, B. (2016). Vermicompost Affects Soil Properties and Spinach Growth, Physiology, and Nutritional Value. HortScience, 51(7), 847-855. https://doi.org/10.21273/hortsci.51.7.847.
Xu, L., Yan, D., Ren, X., Wei, Y., Zhou, J., Zhao, H., & Liang, M. (2016). Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Industrial Crops and Products, 94, 574-585. https://doi.org/10.1016/j.indcrop.2016.09.023.
Yadav, R., Kumar, R., Gupta, R. K., Kaur, T., Kiran, Kour, A., . . . Rajput, A. (2023). Heavy metal toxicity in earthworms and its environmental implications: A review. Environmental Advances, 12, 100374. https://doi.org/10.1016/j.envadv.2023.100374.
Yang, F., Wang, X., Tian, X., Zhang, Z., Zhang, K., & Zhang, K. (2023). Cow manure simultaneously reshaped antibiotic and metal resistome in the earthworm gut tract by metagenomic analysis. Science of The Total Environment, 856, 159010. https://doi.org/10.1016/j.scitotenv.2022.159010.
Yasmin, N., Jamuda, M., Panda, A. K., Samal, K., & Nayak, J. K. (2022). Emission of greenhouse gases (GHGs) during composting and vermicomposting: Measurement, mitigation, and perspectives. Energy Nexus, 7, 100092. https://doi.org/10.1016/j.nexus.2022.100092.
Zhang, C., Liu, J., Zhu, Y., Raza, S. T., Zhang, C., & Chen, Z. (2023). Nitrous oxide emissions from vermicompost preparation and application phases: Emission factors based on a meta-analysis. Applied Soil Ecology, 183, 104769. https://doi.org/10.1016/j.apsoil.2022.104769.
Zhang, M., Liu, Y., Wei, Q., Liu, L., Gu, X., Gou, J., & Wang, M. (2023a). Ameliorative Effects of Vermicompost Application on Yield, Fertilizer Utilization, and Economic Benefits of Continuous Cropping Pepper in Karst Areas of Southwest China. Agronomy, 13(6), 1591. https://doi.org/10.3390/agronomy13061591.
Zhang, M., Liu, Y., Wei, Q., Liu, L., Gu, X., Gou, J., & Wang, M. (2023b). Effects of biochar and vermicompost on growth and economic benefits of continuous cropping pepper at karst yellow soil region in Southwest China [Original Research]. Frontiers in Plant Science, Volume 14 - 2023. https://doi.org/10.3389/fpls.2023.1238663.
Zhang, P., He, Y., Ren, T., Wang, Y., Liu, C., Li, N., & Li, L. (2021). The Crop Residue Removal Threshold Ensures Sustainable Agriculture in the Purple Soil Region of Sichuan, China. Sustainability, 13(7), 3799. https://doi.org/10.3390/su13073799.
Zhang, Q., Li, S., Saleem, M., Ali, M. Y., & Xiang, J. (2021). Biochar and earthworms synergistically improve soil structure, microbial abundance, activities and pyraclostrobin degradation. Applied Soil Ecology, 168, 104154. https://doi.org/10.1016/j.apsoil.2021.104154.
Zhang, W., Gao, D., Chen, Z., Li, H., Deng, J., Qiao, W., . . . Huang, J. (2018). Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China. Geoderma, 325, 152-161. https://doi.org/10.1016/j.geoderma.2018.03.027.
Zhang, W., Hendrix, P. F., Dame, L. E., Burke, R. A., Wu, J., Neher, D. A., . . . Fu, S. (2013). Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nature Communications, 4(1), 2576. https://doi.org/10.1038/ncomms3576.
Zhang, Z. S., Chen, J., Liu, T. Q., Cao, C. G., & Li, C. F. (2016). Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmospheric Environment, 144, 274-281. https://doi.org/10.1016/j.atmosenv.2016.09.003.
Zhao, X., Shen, J.-P., Shu, C.-L., Jin, S.-S., Di, H. J., Zhang, L.-M., & He, J.-Z. (2022). Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Science of The Total Environment, 807, 150781. https://doi.org/10.1016/j.scitotenv.2021.150781.
Zhou, Y., Zhang, D., Zhang, Y., Ke, J., Chen, D., & Cai, M. (2021). Evaluation of temperature on the biological activities and fertility potential during vermicomposting of pig manure employing Eisenia fetida. Journal of Cleaner Production, 302, 126804. https://doi.org/10.1016/j.jclepro.2021.126804.
Zhu, X., Hu, Y., He, Z., Li, Z., & Wu, D. (2023). Earthworms increase soil greenhouse gas emissions reduction potential in a long-term no-till Mollisol. European Journal of Soil Biology, 119, 103569. https://doi.org/10.1016/j.ejsobi.2023.103569.
Zucco, M. A., Walters, S. A., Chong, S.-K., Klubek, B. P., & Masabni, J. G. (2015). Effe
Refbacks
- There are currently no refbacks.









.png)





