Evaluating soil phosphorus tests and nutrient limitations in Mediterranean pastures

Margarida Arrobas, Soraia Raimundo, Almeida Sawimbo, Nuno Rodrigues, Marjan Jongen, Ricardo F. M. Teixeira, Tiago Domingos, Manuel Ângelo Rodrigues

Abstract

Reliable phosphorus (P) fertilization guidelines for Mediterranean pastures remain uncertain due to inconsistent soil testing methods, the complexity of mixed-species systems, and the neglect of other limiting nutrients. This study primarily aimed to identify reliable soil P tests and secondarily to explore potential nutrient limitations by assessing seven acidic Portuguese soils under Mediterranean conditions using subterranean clover (Trifolium subterraneum) and ryegrass (Lolium multiflorum) as model species. Five P extraction methods (Egner-Riehm, Olsen, Bray II, Mehlich I, and anion exchange resin) were compared alongside a pot experiment with clover, ryegrass, and their mixture. Biomass production, plant nutritional status, and soil–plant relationships were used to assess nutrient availability and plant response. The Egner-Riehm method proved the most reliable, showing linear correlation with the resin method (R² = 0.89), widely regarded as the best indicator of soil P bioavailability. P availability was therefore not a limiting factor for biomass production. The lowest soil P content (54 mg kg⁻¹ P₂O₅, Egner-Riehm) was close to the medium threshold (50–100 mg kg⁻¹), yet plant growth indicated adequacy. In contrast, nitrogen (N) emerged as the main growth constraint, and boron (B) deficiency further restricted clover performance, confirming additional nutritional imbalances. A linear relationship between soil and tissue B supported its association with DMY, and tissue B levels were below sufficiency thresholds. Overall, in acidic Portuguese soils under Mediterranean conditions, soil P was adequate, whereas N and B acted as key constraints to productivity. These findings support more accurate and efficient fertilization strategies for Mediterranean pastures.

Keywords

Lolium multiflorum; Pasture fertilization; Resin-P; Soil phosphorus; Trifolium subterraneum

Full Text:

PDF

References

Aguiar, P., Arrobas, M., Nharreluga, E. A., & Rodrigues, M. Â. (2024). Different Species and Cultivars of Broad Beans, Lupins, and Clovers Demonstrated Varying Environmental Adaptability and Nitrogen Fixation Potential When Cultivated as Green Manures in Northeastern Portugal. Sustainability, 16(23), 10725. https://doi.org/10.3390/su162310725

Arrobas, M., Claro, A. M., Ferreira, I. Q., & Rodrigues, M. Â. (2015). The Effect of Legume Species Grown as Cover Crops in Olive Orchards on Soil Phosphorus Bioavailability. Journal of Plant Nutrition, 38(14), 2294-2311. https://doi.org/10.1080/01904167.2015.1009104

Arrobas, M., Decker, J. V., Feix, B. L., Godoy, W. I., Casali, C. A., Correia, C. M., & Ângelo Rodrigues, M. (2022). Biochar and zeolites did not improve phosphorus uptake or crop productivity in a field trial performed in an irrigated intensive farming system. Soil Use and Management, 38(1), 564-575. https://doi.org/10.1111/sum.12704

Arrobas, M., Raimundo, S., Correia, C. M., & Rodrigues, M. Â. (2024). Omitting the Application of Nitrogen or Potassium Reduced the Growth of Young Chestnut (Castanea sativa) Trees, While a Lack of Boron Decreased Fruit Yield. Soil Systems, 8(4), 104. https://doi.org/10.3390/soilsystems8040104

Bell, R. (2023). Chapter 11 - Diagnosis and prediction of deficiency and toxicity of nutrients. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner's Mineral Nutrition of Plants (Fourth Edition) (pp. 477-495). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00008-3

Bouray, M., Moir, J. L., Condron, L. M., & Paramashivam, D. (2022). Early effects of surface liming on soil P biochemistry and dynamics in extensive grassland. Nutrient Cycling in Agroecosystems, 124(2), 173-187. https://doi.org/10.1007/s10705-021-10163-4

Bryson, G. M., Mills, H. A., Sasseville, D. N., Jones, J. B., & Barker, A. V. (2014). Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis, Interpretation and Use of Results of Agronomic and Horticultural Crop Plant Tissue. Micro-Macro Publishing, Incorporated.

Cakmak, I., Brown, P., Colmenero-Flores, J. M., Husted, S., Kutman, B. Y., Nikolic, M., . . . Zhao, F.-J. (2023). Chapter 7 - Micronutrients. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner's Mineral Nutrition of Plants (Fourth Edition) (pp. 283-385). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00017-4

Carreira, E., Serrano, J., Gomes, C. J. P., Shahidian, S., Paniagua, L. L., Pilirito, A., . . . Pereira, A. F. (2022). Effect of Sheep Grazing, Stocking Rates and Dolomitic Limestone Application on the Floristic Composition of a Permanent Dryland Pasture, in the Montado Agroforestry System of Southern Portugal. Animals, 12(19), 2506. https://doi.org/10.3390/ani12192506

Carreira, E., Serrano, J., Shahidian, S., Infante, P., Paniagua, L. L., Moral, F., . . . Pereira, A. F. (2025). Sustainable Intensification of the Montado Ecosystem: Evaluation of Sheep Stocking Methods and Dolomitic Limestone Application. Sustainability, 17(1), 363. https://doi.org/10.3390/su17010363

Castro-Montoya, J. M., & Dickhoefer, U. (2020). The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Animal Feed Science and Technology, 269, 114641. https://doi.org/10.1016/j.anifeedsci.2020.114641

Cuadro, R., Cadenazzi, M., & Quincke, J. A. (2022). Soil sampling depth and phosphorus extraction method for phosphorus in leguminous pastures. Agrociencia Uruguay, 26(1). https://doi.org/10.31285/AGRO.26.954

FAO. (2019). Standard operating procedure for soil total carbon - Dumas dry combustion method. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/handle/20.500.14283/ca7781en

FAO. (2021a). Standard operating procedure for soil available phosphorus - Mehlich I Method. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/handle/20.500.14283/cb5427en

FAO. (2021b). Standard operating procedure for soil total nitrogen - Dumas dry combustion method. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/handle/20.500.14283/cb3646en

Hamilton, L. J., Reed, K. F. M., Leach, E. M. A., & Brockwell, J. (2015). Boron deficiency in pasture based on subterranean clover (Trifolium subterraneum L.) is linked to symbiotic malfunction. Crop & Pasture Science, 66(11), 1197-1212. https://doi.org/10.1071/cp14300

Hawkesford, M. J., Cakmak, I., Coskun, D., De Kok, L. J., Lambers, H., Schjoerring, J. K., & White, P. J. (2023). Chapter 6 - Functions of macronutrients. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner's Mineral Nutrition of Plants (Fourth Edition) (pp. 201-281). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00019-8

Higgins, A. J., Cassidy, R., & Bailey, J. S. (2021). The relative impacts of dairy and non-dairy ruminant sectors on the Olsen-P status of grassland soils and hence water quality in Northern Ireland. Soil Use and Management, 37(4), 900-905. https://doi.org/10.1111/sum.12618

Hungria, M., & Nogueira, M. A. (2023). Chapter 16 - Nitrogen fixation. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner's Mineral Nutrition of Plants (Fourth Edition) (pp. 615-650). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00006-X

Kleinman, P. J. A., Sharpley, A. N., Withers, P. J. A., Bergström, L., Johnson, L. T., & Doody, D. G. (2015). Implementing agricultural phosphorus science and management to combat eutrophication. AMBIO, 44(2), 297-310. https://doi.org/10.1007/s13280-015-0631-2

Lewis, C., Rafique, R., Foley, N., Leahy, P., Morgan, G., Albertson, J., . . . Kiely, G. (2013). Seasonal exports of phosphorus from intensively fertilised nested grassland catchments. Journal of Environmental Sciences, 25(9), 1847-1857. https://doi.org/10.1016/S1001-0742(12)60255-1

McLachlan, Jonathan W., Flavel, Richard J., & Guppy, Chris N. (2024). Preferential Phosphorus Placement Improves the Productivity and Competitiveness of Tropical Pasture Legumes. Legume Science, 6(2), e235. https://doi.org/10.1002/leg3.235

Moir, J., Jordan, P., Moot, D., & Lucas, R. (2016). Phosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditions. Journal of Soil Science and Plant Nutrition, 16, 438-460. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162016000200007&nrm=iso

Monjardino, M., Loi, A., Thomas, D. T., Revell, C. K., Flohr, B. M., Llewellyn, R. S., & Norman, H. C. (2022). Improved legume pastures increase economic value, resilience and sustainability of crop-livestock systems. Agricultural Systems, 203, 103519. https://doi.org/10.1016/j.agsy.2022.103519

Morton, J. D. (2020). A review of research on the effect of lime on New Zealand soils and pastures. New Zealand Journal of Agricultural Research, 63(2), 189-201. https://doi.org/10.1080/00288233.2018.1537293

Muktamar, Z., Lifia, L., & Adiprasetyo, T. (2020). Phosphorus availability as affected by the application of organic amendments in Ultisols. Sains Tanah Journal of Soil Science and Agroclimatology, 17(1), 7. https://doi.org/10.20961/stjssa.v17i1.41284

Noor, M. Y., Hartono, A., & Nugroho, B. (2023). Determining the optimal application rate of chicken manure for agricultural land through Phosphorus sorption-desorption analyses in Andisols of Wonokitri, East Java, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 20(2), 8. https://doi.org/10.20961/stjssa.v20i2.70746

Olson-Rutz, K., & Jones, C. (2018). Soil nutrient management for forages: Phosphorus, potassium, sulphur and micronutrient. Department of Land Resources and Environmental Sciences, Montana State University, Bozeman. https://animalrangeextension.montana.edu/forage/soilnutrient-phosphorus.html

Portela, E., Ferreira-Cardoso, J., Louzada, J., & Gomes-Laranjo, J. (2015). Assessment of Boron Application in Chestnuts: Nut Yield and Quality. Journal of Plant Nutrition, 38(7), 973-987. https://doi.org/10.1080/01904167.2014.963116

Prestes, N. E., Amarante, C. V. T. d., Pinto, C. E., Prestes, G. A., Zanini, G. D., Zanella, P. G., & Sbrissia, A. F. (2017). Limestone and phosphorus application and forage production in natural pastures with sodseeding of cool-season species. Semina: Ciências Agrárias, 38(6), 3681-3694. https://doi.org/10.5433/1679-0359.2017v38n6p3681

Recena, R., Díaz, I., & Delgado, A. (2017). Estimation of total plant available phosphorus in representative soils from Mediterranean areas. Geoderma, 297, 10-18. https://doi.org/10.1016/j.geoderma.2017.02.016

Rodrigues, M. Â., Dimande, P., Pereira, E. L., Ferreira, I. Q., Freitas, S., Correia, C. M., . . . Arrobas, M. (2015). Early-maturing annual legumes: an option for cover cropping in rainfed olive orchards. Nutrient Cycling in Agroecosystems, 103(2), 153-166. https://doi.org/10.1007/s10705-015-9730-5

Schils, R. L. M., Bufe, C., Rhymer, C. M., Francksen, R. M., Klaus, V. H., Abdalla, M., . . . Price, J. P. N. (2022). Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agriculture, Ecosystems & Environment, 330, 107891. https://doi.org/10.1016/j.agee.2022.107891

Serrano, J., Shahidian, S., Marques da Silva, J., Moral, F., Carvajal-Ramirez, F., Carreira, E., . . . Carvalho, M. d. (2020). Evaluation of the Effect of Dolomitic Lime Application on Pastures—Case Study in the Montado Mediterranean Ecosystem. Sustainability, 12(9), 3758. https://doi.org/10.3390/su12093758

Solomon, J. K. Q. (2022). Chapter 12 - Legumes for animal nutrition and dietary energy. In R. S. Meena & S. Kumar (Eds.), Advances in Legumes for Sustainable Intensification (pp. 227-244). Academic Press. https://doi.org/10.1016/B978-0-323-85797-0.00026-4

Teixeira, R. F. M., Proença, V., Crespo, D., Valada, T., & Domingos, T. (2015). A conceptual framework for the analysis of engineered biodiverse pastures. Ecological Engineering, 77, 85-97. https://doi.org/10.1016/j.ecoleng.2015.01.002

Temminghoff, E. E. J. M., & Houba, V. J. G. (Eds.). (2004). Plant analysis procedures. Springer Dordrecht. https://doi.org/10.1007/978-1-4020-2976-9.

Toor, G. S., Yang, Y.-Y., Morris, M., Schwartz, P., Darwish, Y., Gaylord, G., & Webb, K. (2020). Phosphorus pools in soils under rotational and continuous grazed pastures. Agrosystems, Geosciences & Environment, 3(1), e20103. https://doi.org/10.1002/agg2.20103

van Dobben, H. F., Quik, C., Wamelink, G. W. W., & Lantinga, E. A. (2019). Vegetation composition of Lolium perenne-dominated grasslands under organic and conventional farming. Basic and Applied Ecology, 36, 45-53. https://doi.org/10.1016/j.baae.2019.03.002

Van Reeuwijk, L. P. (2002). Technical Paper 9: Procedures for Soil Analysis (6th ed.). ISRIC: Wageningen, The Netherlands; FAO: Rome, Italy. https://wrb.isric.org/files/ISRIC_TechPap09_2002.pdf

Vistoso, E., Iraira, S., & Sandaña, P. (2021). Correction to: Phosphorus Use Efficiency in Permanent Pastures in Andisols. Journal of Soil Science and Plant Nutrition, 21(4), 2871-2872. https://doi.org/10.1007/s42729-021-00573-2

Wahba, M. M., & Zaghloul, A. M. (2024). Effect of soil properties on phosphate desorption from some cultivated soils in arid region. Sains Tanah Journal of Soil Science and Agroclimatology, 21(1), 10. https://doi.org/10.20961/stjssa.v21i1.79310

Weil, R. R., & Brady, N. C. (2017). The Nature and Properties of Soils (15th ed., Vol. 13). Pearson Education Limited: Edinburgh, UK.

Yang, Q., Lin, Y., Jin, L., Ren, X., He, C., & Liu, Q. (2021). Responses of mineral nutrient contents and transport in red clover under aluminum stress. Legume Science, 3(4), e94. https://doi.org/10.1002/leg3.94

Zaryab, K., Aftab, T., Dost, M., Maria, M., & Javaid, H. (2024). Comparative Analysis of Soil Phosphorus Determination Methods and Their Correlation with Plant Phosphorus in Standing Wheat Crops. Turkish Journal of Agriculture - Food Science and Technology, 12(4), 568-574. https://doi.org/10.24925/turjaf.v12i4.568-574.6393

Refbacks

  • There are currently no refbacks.