Identification of sowing window and sown area of maize and sorghum in rice fallows using multi-source satellite remote sensing

Sunil Kumar Medida, Prasuna Rani Podila, Geetha Sireesha, K. Anny Mrudhula, Ponnurangam Gramani Ganesan

Abstract

Identifying the start of sowing in rice fallows is challenging due to its typical low land agro-ecosystem. Tracking the spatio-temporal shifts that take place during the transition from a wet to dry ecosystem, identifying crops, assessing their extent, and identifying optimal planting periods are vital information for researchers and planners. This study aimed at determining the crop sown area and sowing window of maize and sorghum crops planted in rice fallows during the Rabi 2020-2021 season in the Krishna Western delta of Guntur district, Andhra Pradesh. Optical cloud-free satellite images of Landsat-8 and Sentinel-2 were downloaded and using band ratios NDVI and NDWI was derived. A Threshold based algorithm was developed to detect the crop sowing window. The total area sown was determined using the SVM algorithm. The threshold-based algorithm is well-suited for identifying the sowing windows. The sowing window in the second fortnight of January had the largest area for both crops compared to other sowing windows. The detected sowing windows exhibited a deviation of up to two satellite acquisition intervals. The estimated area using SVM algorithm for maize and sorghum was 29,518 ha and 65,417 ha, respectively. The threshold-based algorithm overestimated the maize and sorghum crops as compared to SVM. This study established the superior performance of the Support Vector Machine (SVM) algorithm for crop classification. Statistical validation confirmed that the SVM model achieved significantly higher accuracy in distinguishing both maize and sorghum from other land covers compared to the threshold-based algorithm, which exhibited a greater tendency for misclassification.

Keywords

Crop area; NDVI; NDWI; SVM; Temporal analysis

Full Text:

PDF

References

Babu, K. S., & Padmalatha, Y. (2023). Effect of Irrigation and Fertigation Schedules in Rice Fallow Zero Tillage Maize. Chemical Science Review and Letters, 12(48), 222-228. https://chesci.com/wp-content/uploads/2024/03/v12i48_5_CS205406191_Completed.pdf

Bamboriya, S. D., Sepat, S., Kumar, R., Jat, S. L., Rakshit, S., & Zaidi, P. H. (2025). Optimization of sowing time to mitigate heat stress in spring maize (Zea mays) in Indo-Gangetic plains of India. The Indian Journal of Agricultural Sciences, 95(1), 22–26. https://doi.org/10.56093/ijas.v95i1.142645

Chandna, P. K., & Mondal, S. (2020). Analyzing multi-year rice-fallow dynamics in Odisha using multi-temporal Landsat-8 OLI and Sentinel-1 Data. GIScience & Remote Sensing, 57(4), 431-449. https://doi.org/10.1080/15481603.2020.1731074

Chapke, R. R., Babu, S., Subbarayudu, B., & Tonapi, V. A. (2017). Growing popularity of sorghum in rice fallows: An IIMR Case study. Bulletin, ICAR-Indian Institute of Millets Research, Hyderabad 500 030, India. https://www.researchgate.net/publication/316560665_Growing_popularity_of_sorghum_in_rice_fallows_An_IIMR_Case_study

Chowdhury, M. R., Dash, S., Sar, K., & Gulati, J. (2020). Pulses in rice fallow: a way towards achieving nutritional security: a review. Agricultural Reviews, 41(3), 264-271. https://doi.org/10.18805/ag.R-2013

Directorate of Economics and Statistics. (2020). Agricultural Statistics at a glance 2019-20. Government of Andhra Pradesh.

Gao, F., Anderson, M. C., Johnson, D. M., Seffrin, R., Wardlow, B., Suyker, A., . . . Browning, D. M. (2021). Towards Routine Mapping of Crop Emergence within the Season Using the Harmonized Landsat and Sentinel-2 Dataset. Remote Sensing, 13(24), 5074. https://doi.org/10.3390/rs13245074

Gu, H., Shang, K., Qin, A., & Xiao, C. (2022). Identification of grain crop using multi-source satellite remote sensing data at field parcel scale. Transactions of the Chinese Society of Agri‐cultural Engineering, 38(16), 33-41. https://doi.org/10.11975/j.issn.1002-6819.2022.16.004

Gumma, M. K., Mohanty, S., Nelson, A., Arnel, R., Mohammed, I. A., & Das, S. R. (2015). Remote sensing based change analysis of rice environments in Odisha, India. Journal of Environmental Management, 148, 31-41. https://doi.org/10.1016/j.jenvman.2013.11.039

Gumma, M. K., Thenkabail, P. S., Teluguntla, P., Rao, M. N., Mohammed, I. A., & Whitbread, A. M. (2016). Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data. International Journal of Digital Earth, 9(10), 981-1003. https://doi.org/10.1080/17538947.2016.1168489

Gutierrez, M. A., Paguirigan, N. M., Raviz, J., Mabalay, M. R., Alosnos, E., Villano, L., . . . Laborte, A. (2019). The Rice Planting Window in The Philippines: An Analysis Using Multi-Temporal SAR Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W19, 241-248. https://doi.org/10.5194/isprs-archives-XLII-4-W19-241-2019

Kumar, R., Das, A., Mondal, S., Upadhyay, P. K., Bhatt, B. P., Mishra, J. S., . . . Chaudhari, S. K. (2025). Greening rice-fallow areas: integrating pulses and oilseeds for sustainable cropping in eastern India [Review]. Frontiers in Sustainable Food Systems, Volume 9 - 2025. https://doi.org/10.3389/fsufs.2025.1502759

Liaqat, W., Altaf, M. T., Barutçular, C., Mohamed, H. I., Ali, Z., & Khan, M. O. (2024). Drought stress in sorghum: physiological tools, breeding technology, Omics approaches and Genomic-assisted breeding -A review. Journal of Soil Science and Plant Nutrition, 24(2), 1665-1691. https://doi.org/10.1007/s42729-024-01702-3

Medida, S. K., Prasuna Rani, P., Suneel Kumar, G. V., Geetha Sireesha, P. V., Kranthi, K. C., Vinusha, V., . . . Hossain, A. (2023). Detection of water deficit conditions in different soils by comparative analysis of standard precipitation index and normalized difference vegetation index. Heliyon, 9(4), e15093. https://doi.org/10.1016/j.heliyon.2023.e15093

Moumni, A., & Lahrouni, A. (2021). Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area. Scientifica, 2021(1), 8810279. https://doi.org/10.1155/2021/8810279

Naik, B. S. S. S., Murthy, K. R., & Rupesh, T. (2020). Comparative response of sorghum genotypes to varied levels of nitrogen in rice-fallows of North Coastal Region of Andhra Pradesh. Journal of Environmental Biology, 40, 1710-1718. https://doi.org/10.22438/jeb/41/6/SI-259

Olivares Campos, B. O., Paredes, F., Rey, J. C., Lobo, D., & Galvis-Causil, S. (2021). The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela. Sains Tanah Journal of Soil Science and Agrolcimatology, 18(1), 7. https://doi.org/10.20961/stjssa.v18i1.50379

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015

Peramaiyan, P., Srivastava, A. K., Kumar, V., Seelan, L. P., Banik, N. C., Khandai, S., . . . Malik, R. K. (2023). Crop establishment and diversification strategies for intensification of rice-based cropping systems in rice-fallow areas in Odisha. Field Crops Research, 302, 109078. https://doi.org/10.1016/j.fcr.2023.109078

Ray, S., & Neetu. (2017). Crop area estimation with Remote Sensing. In J. Delincé (Ed.), Handbook on Remote Sensing for Agricultural Statistics (Chapter 5) (pp. 131-155). Global Strategy to improve Agricultural and Rural Statistics (GSARS). Food and Agriculture Organization of the United Nations (FAO). Rome. https://openknowledge.fao.org/server/api/core/bitstreams/dcadd248-cccb-43ad-9e3c-7aa0cf2bb577/content

Rolle, M., Tamea, S., Claps, P., Ayari, E., Baghdadi, N., & Zribi, M. (2022). Analysis of Maize Sowing Periods and Cycle Phases Using Sentinel 1&2 Data Synergy. Remote Sensing, 14(15), 3712. https://doi.org/10.3390/rs14153712

Sarangi, S. K., Singh, S., Kumar, V., Srivastava, A. K., Sharma, P. C., & Johnson, D. E. (2020). Tillage and crop establishment options for enhancing the productivity, profitability, and resource use efficiency of rice-rabi systems of the salt-affected coastal lowlands of eastern India. Field Crops Research, 247, 107494. https://doi.org/10.1016/j.fcr.2019.03.016

Sarangi, S. K., Singh, S., Srivastava, A. K., Choudhary, M., Mandal, U. K., Lama, T. D., . . . Ismail, A. M. (2020). Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India. Agronomy, 10(12), 2019. https://doi.org/10.3390/agronomy10122019

Srivastava, A. K., Borah, S. B., Ghosh Dastidar, P., Sharma, A., Gogoi, D., Goswami, P., . . . Bhattacharyya, A. (2023). Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India. Agriculture, 13(8), 1509. https://doi.org/10.3390/agriculture13081509

Suud, H. M., & Kusbianto, D. E. (2024). Exploring El Nino effects on agricultural area using Landsat images analysis: A case study in Bondowoso Regency, Indonesia. Sains Tanah Journal of Soil Science and Agrolcimatology, 21(2), 9. https://doi.org/10.20961/stjssa.v21i2.85190

Zhang, X., Kuang, M., Zhong, L. a., & Yi, M. (2025). Extracting the phenological periods of winter wheat at field scale based on the characteristics of NDVI time series curves from multisource remote sensing images. Transactions of the Chinese Society of Agricultural Engineering, 41(1), 181-191. http://dx.doi.org/10.11975/j.issn.1002-6819.202407066

Zhong, L., Hu, L., & Zhou, H. (2019). Deep learning based multi-temporal crop classification. Remote Sensing of Environment, 221, 430-443. https://doi.org/10.1016/j.rse.2018.11.032

Refbacks

  • There are currently no refbacks.