Peat hydraulic properties along the gradient of oil palm ages in the tropical monsoon region

Nuraeni Dwi Dharmawati, Komariah Komariah, Suntoro Suntoro, Hermantoro Hermantoro, Azmal Hossan

Abstract

The conversion of vast peatland areas to oil palm plantations in Indonesia may alter hydrological functions under long-term agricultural use. This study aimed to analyze the hydraulic properties of peat soil under oil palm (Elaeis guineensis Jacq.) plantations of varying ages (2–5, 6–9, and >10 years) in Ketapang, West Kalimantan, Indonesia, a region with a tropical monsoon climate. There are 27 samples gathered from 3 plantation ages in the 3 peat depths (0-20 cm, 20-40 cm, and 40-60 cm). Hydraulic properties: water holding capacity (WHC), bulk density, particle density, and porosity were analyzed using standard gravimetric, pycnometer, and oven-drying methods. Weather and environmental data from 2013–2022 were used to calculate reference evapotranspiration (ETo), crop evapotranspiration (ETc), and water balance. The results showed that hydraulic properties improved with soil depth and plantation age. WHC ranged from 400% to 850%, increasing significantly in mature plantations. Bulk density declined with depth and age, while porosity significantly increased and reached its maximum at 56.87% in older plantations. Although mature oil palms have high crop water demands (ETc), water availability remains sufficient to meet their needs. However, excess water must be properly managed to avoid reducing oil palm productivity and to preserve peat quality. These findings suggest that as oil palm matures, root development and organic residue accumulation enhance peat’s hydrological properties. This study may contribute to understanding peatland behavior under oil palm cultivation and provide crucial insight for improving irrigation and land management practices in tropical peat ecosystems.

Keywords

Land conversion; Ketapang; Water management; Water surplus

Full Text:

PDF

References

Abd. Rashid, N. S. (2019). Soil water movement behavior under oil palm tree of different ages [Thesis (PhD. (Civil Engineering)), Universiti Teknologi Malaysia]. http://openscience.utm.my/handle/123456789/690

Afandi, M., Mohd Din, A., Tarmizi, A. H., & Yaakob, O. (2022). Oil palm water requirement and the need for irrigation in dry Malaysian areas. Journal of Oil Palm Research, 34(3), 1-15. https://doi.org/10.21894/jopr.2022.0052

Barokah, M., Dewi, F. L. S., & Rahmawati, A. (2024). Dampak Keseimbangan Air terhadap Pertumbuhan Tanaman Kelapa Sawit (Elaeis guineensis): Review Literature. Agritechpedia, 2(01), 48-54. https://journal.eduartpia.id/index.php/agritechpedia/article/view/83

Batista, A. M., Pessoa, T. N., Putti, F. F., Andreote, F. D., & Libardi, P. L. (2024). Root Influences Rhizosphere Hydraulic Properties through Soil Organic Carbon and Microbial Activity. Plants, 13(14), 1981. https://doi.org/10.3390/plants13141981

Bodner, G., Leitner, D., & Kaul, H. P. (2014). Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 380(1), 133-151. https://doi.org/10.1007/s11104-014-2079-8

Cannavo, P., Hafdhi, H., & Michel, J.-C. (2011). Impact of Root Growth on the Physical Properties of Peat Substrate under a Constant Water Regimen. HortScience, 46(10), 1394-1399. https://doi.org/10.21273/hortsci.46.10.1394

Carlson, K. M., Heilmayr, R., Gibbs, H. K., Noojipady, P., Burns, D. N., Morton, D. C., . . . Kremen, C. (2018). Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proceedings of the National Academy of Sciences, 115(1), 121-126. https://doi.org/10.1073/pnas.1704728114

Corley, R. H. V., & Tinker, P. B. (2015). The Oil Palm (5th ed.). Wiley-Blackwell.

Firdaus, M. S. (2012). Effects of oil palm plantation development on peat physical properties of secondary peat swamp forest in Igan, Sarawak, Malaysia [Thesis, Universiti Putra Malaysia].

Gromikora, N., Yahya, S., & suwarto. (2015). Permodelan Pertumbuhan dan Produksi Kelapa Sawit pada Berbagai Taraf Penunasan Pelepah. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 42(3). https://doi.org/10.24831/jai.v42i3.9179

Guillaume, T., Holtkamp, A. M., Damris, M., Brümmer, B., & Kuzyakov, Y. (2016). Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture, Ecosystems & Environment, 232, 110-118. https://doi.org/10.1016/j.agee.2016.07.002

Hajrul, S., Muliadi, M., & Adriat, R. (2019). Analisis Data Curah Hujan Kabupaten Ketapang dan Kota Pontianak Menggunakan Transformasi Wavelet. PRISMA FISIKA, 7(2). https://doi.org/10.26418/pf.v7i2.34022

Harahap, I. Y., & Darmosarkoro, W. (1999). Pendugaan kebutuhan air untuk pertumbuhan kelapa sawit di lapang dan aplikasinya dalam pengembangan sistem irigasi. Jurnal Penelitian Kelapa Sawit, 7(2), 87-104. https://pis.iopri.co.id/upload/journalIOPRI/files/230822105956.pdf

Henson, I. E., & Mohd Tayeb, M. (2004). Seasonal variation in yield and developmental processes in an oil palm density trial on a peat soil: 1. Yield and bunch number components. Journal of Oil Palm Research, 16(2), 106-120. https://jopr.mpob.gov.my/seasonal-variation-in-yield-and-developmental-processes-in-an-oil-palm-density-trial-on-a-peat-soil-1-yield-and-bunch-number-components/

Hergoualc’h, K., Hendry, D. T., Murdiyarso, D., & Verchot, L. V. (2017). Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry, 135(3), 203-220. https://doi.org/10.1007/s10533-017-0363-4

Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053-1071. https://doi.org/10.5194/bg-9-1053-2012

Kunarso, A., Bonner, M. T. L., Blanch, E. W., & Grover, S. (2022). Differences in Tropical Peat Soil Physical and Chemical Properties Under Different Land Uses: A Systematic Review and Meta-analysis. Journal of Soil Science and Plant Nutrition, 22(4), 4063-4083. https://doi.org/10.1007/s42729-022-01008-2

Martinez, P., Buurman, P., do Nascimento, D. L., Almquist, V., & Vidal-Torrado, P. (2021). Substantial changes in podzol morphology after tree‐roots modify soil porosity and hydrology in a tropical coastal rainforest. Plant and Soil, 463(1), 77-95. https://doi.org/10.1007/s11104-021-04896-y

Maysarah, S., Nugroho, Y., & Susilawati, S. (2021). Analisis Sifat Fisika Tanah pada Lahan Gambut di Kecamatan Liang Anggang Kota Banjarbaru Provinsi Kalimantan Selatan [Analysis of Soil Physical Properties on Peatlands in Liang Anggang District, Banjarbaru City, South Kalimantan Province]. Jurnal Sylva Scienteae, 4(1), 166-173. https://doi.org/10.20527/jss.v4i1.3104

Megayanti, L., Zurhalena, Z., Junedi, H., & Fuadi, N. A. (2022). Kajian beberapa sifat fisika tanah yang ditanami kelapa sawit pada umur dan kelerengan yang berbeda (Studi Kasus Perkebunan Sawit Kelurahan Simpang Tuan, Kecamatan Mendahara Ulu,Tanjung Jabung Timur). Jurnal Tanah dan Sumberdaya Lahan, 9(2), 413-420. https://doi.org/10.21776/ub.jtsl.2022.009.2.22

Melling, L., Goh, K. J., Chaddy, A., & Hatano, R. (2014). Soil CO2 Fluxes from Different Ages of Oil Palm in Tropical Peatland of Sarawak, Malaysia. In A. E. Hartemink & K. McSweeney (Eds.), Soil Carbon (pp. 447-455). Springer International Publishing. https://doi.org/10.1007/978-3-319-04084-4_44

Menberu, M. W., Marttila, H., Ronkanen, A.-K., Haghighi, A. T., & Kløve, B. (2021). Hydraulic and Physical Properties of Managed and Intact Peatlands: Application of the Van Genuchten-Mualem Models to Peat Soils. Water Resources Research, 57(7), e2020WR028624. https://doi.org/10.1029/2020WR028624

Minasny, B., & McBratney, A. B. (2018). Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69(1), 39-47. https://doi.org/10.1111/ejss.12475

Nasution, H., Yusfaneti, Y., & Saat, A. (2023). The Relationship Between Peat Water Content to Physical Properties of Peat at Various Ages of oil Palm Plant and Year Products in Mekar Jaya Village. Attractive : Innovative Education Journal, 5(1), 437-446. https://doi.org/10.51278/aj.v5i1.720

Osaki, M., Nursyamsi, D., Noor, M., Wahyunto, & Segah, H. (2016). Peatland in Indonesia. In M. Osaki & N. Tsuji (Eds.), Tropical Peatland Ecosystems (pp. 49-58). Springer Japan. https://doi.org/10.1007/978-4-431-55681-7_3

Page, S. E. (2024). Lowland Tropical Peatlands–A Brief Review of Their Important Role in the Global Carbon Cycle and Biodiversity Support. Media Konservasi, 29(2), 165-165. https://doi.org/10.29244/medkon.29.2.165

Page, S. E., & Baird, A. J. (2016). Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41(Volume 41, 2016), 35-57. https://doi.org/10.1146/annurev-environ-110615-085520

Pérez-Sato, M., Gómez-Gutiérrez, Á., López-Valdez, F., Ayala-Niño, F., Soni-Guillermo, E., González-Graillet, M., & Pérez-Hernández, H. (2023). Soil physicochemical properties change by age of the oil palm crop. Heliyon, 9(6), e16302. https://doi.org/10.1016/j.heliyon.2023.e16302

Rahmawati, R., Penyang, P., Firdara, E. K., Rosdiana, R., & Putir, P. E. (2022). Changes in Physical and Chemical Properties of Peat in Various Ages of Oil Palm Plant In East Kotawaringin District. Devotion: Journal of Research and Community Service, 3(12), 1132-1148. https://doi.org/10.36418/dev.v3i12.234

Ratai, J., Teh, C. B. S., Tan, N. P., Mohidin, H., Goh, K. J., Sangok, F. E., & Melling, L. (2024). Tropical peat soil changes across successive oil palm generations in Sarawak, Malaysia. Heliyon, 10(18), e37754. https://doi.org/10.1016/j.heliyon.2024.e37754

Röll, A., Niu, F., Meijide, A., Hardanto, A., Hendrayanto, Knohl, A., & Hölscher, D. (2015). Transpiration in an oil palm landscape: effects of palm age. Biogeosciences, 12(19), 5619-5633. https://doi.org/10.5194/bg-12-5619-2015

Rosyadi. (2023). Implementasi Model Green Economic pada Kegiatan Replanting Kebun Kelapa Sawit (Studi Kasus Kabupaten Ketapang Kalimantan Barat). Jurnal Ilmiah Ekonomi Bisnis, 28(2), 225-241. https://doi.org/10.35760/eb.2023.v28i2.7325

Safitri, L., Hermantoro, Purboseno, S., Kautsar, V., Y.Wijayanti, & Ardiyanto, A. (2018). Development of Oil Palm Water Balance Tool for Predicting Water Content Distribution in Root Zone. International Journal of Engineering Technology and Sciences, 5(2), 38-49. https://doi.org/10.15282/ijets.v5i2.1393

Setia Budi, F., Daryono, D., Kusuma, & Rais, A. F. (2023). Analysis Of The Monsoon Contribution In Forming Rainfall Characteristics in Kalimantan As An Effort In Formulating Flood Disaster Mitigation Policies To Support National Security. International Journal of Progressive Sciences and Technologies, 37(1). https://ijpsat.org/index.php/ijpsat/article/view/5119

Suryadi, S., Hadi Dharmawan, A., & Barus, B. (2021). Expansion and Conflict at Oil Palm Plantations: A Case in Terantang Manuk Village, Pelalawan District, Riau. Sodality: Jurnal Sosiologi Pedesaan, 8(3), 167-178. https://doi.org/10.22500/8202031914

Sutikno, S., Rinaldi, Yusa, M., Nasrul, B., Yesi, Chairul, . . . Ardi, M. G. (2023). Water Management for Integrated Peatland Restoration in Pulau Tebing Tinggi PHU, Riau. In K. Mizuno, O. Kozan, & H. Gunawan (Eds.), Vulnerability and Transformation of Indonesian Peatlands (pp. 161-183). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0906-3_9

Suwondo, Darmadi, Roza, D., Murdiya, F., Oktarianda, R., & Risaundi, D. D. (2023). Mitigation of wildlife disturbance at oil and gas industry electrical facilities in Riau Province, Indonesia. Biodiversitas Journal of Biological Diversity, 24(12). https://doi.org/10.13057/biodiv/d241253

Tao, Z., Chen, G., Wang, X., & Siddique, K. H. M. (2023). Root water uptake model shows age-related water uptake patterns of apple trees on the Chinese Loess Plateau. Journal of Hydrology: Regional Studies, 50, 101594. https://doi.org/10.1016/j.ejrh.2023.101594

Tinuntun, R. S. T., Dewi, W. S., Mujiyo, M., Herawati, A., Herdiansyah, G., Sumani, S., . . . Kotroczó, Z. (2025). Pedotransfer functions for soil organic carbon stock and soil porosity interpretation in diverse palm oil plantation soils. Sains Tanah Journal of Soil Science and Agroclimatology, 22(1), 13. https://doi.org/10.20961/stjssa.v22i1.93460

Utami, S. R., Kurniawan, S., Agustina, C., & Corre, M. D. (2021). Soil macroporosity, physical properties and nutrient leaching after forest conversion to rubber and oil palm plantation in an Acrisol of Jambi, Indonesia. Journal of Degraded and Mining Lands Management, 9(1), 3155-3163. https://doi.org/10.15243/jdmlm.2021.091.3155

Walczak, R., Rovdan, E., & Witkowska-Walczak, B. (2002). Water retention characteristics of peat and sand mixtures [journal article]. International Agrophysics, 16(2), 161-165. http://www.international-agrophysics.org/Water-retention-characteristics-of-peat-and-sand-mixtures,106790,0,2.html

Word, C. S., McLaughlin, D. L., Strahm, B. D., Stewart, R. D., Varner, J. M., Wurster, F. C., . . . Link, N. T. (2022). Peatland drainage alters soil structure and water retention properties: Implications for ecosystem function and management. Hydrological Processes, 36(3), e14533. https://doi.org/10.1002/hyp.14533

Xu, J., Morris, P. J., Liu, J., & Holden, J. (2018). PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. CATENA, 160, 134-140. https://doi.org/10.1016/j.catena.2017.09.010

Refbacks

  • There are currently no refbacks.