Peat hydraulic properties along the gradient of oil palm ages in the tropical monsoon region
Abstract
Keywords
Full Text:
PDFReferences
Abd. Rashid, N. S. (2019). Soil water movement behavior under oil palm tree of different ages [Thesis (PhD. (Civil Engineering)), Universiti Teknologi Malaysia]. http://openscience.utm.my/handle/123456789/690
Afandi, M., Mohd Din, A., Tarmizi, A. H., & Yaakob, O. (2022). Oil palm water requirement and the need for irrigation in dry Malaysian areas. Journal of Oil Palm Research, 34(3), 1-15. https://doi.org/10.21894/jopr.2022.0052
Barokah, M., Dewi, F. L. S., & Rahmawati, A. (2024). Dampak Keseimbangan Air terhadap Pertumbuhan Tanaman Kelapa Sawit (Elaeis guineensis): Review Literature. Agritechpedia, 2(01), 48-54. https://journal.eduartpia.id/index.php/agritechpedia/article/view/83
Batista, A. M., Pessoa, T. N., Putti, F. F., Andreote, F. D., & Libardi, P. L. (2024). Root Influences Rhizosphere Hydraulic Properties through Soil Organic Carbon and Microbial Activity. Plants, 13(14), 1981. https://doi.org/10.3390/plants13141981
Bodner, G., Leitner, D., & Kaul, H. P. (2014). Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 380(1), 133-151. https://doi.org/10.1007/s11104-014-2079-8
Cannavo, P., Hafdhi, H., & Michel, J.-C. (2011). Impact of Root Growth on the Physical Properties of Peat Substrate under a Constant Water Regimen. HortScience, 46(10), 1394-1399. https://doi.org/10.21273/hortsci.46.10.1394
Carlson, K. M., Heilmayr, R., Gibbs, H. K., Noojipady, P., Burns, D. N., Morton, D. C., . . . Kremen, C. (2018). Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proceedings of the National Academy of Sciences, 115(1), 121-126. https://doi.org/10.1073/pnas.1704728114
Corley, R. H. V., & Tinker, P. B. (2015). The Oil Palm (5th ed.). Wiley-Blackwell.
Firdaus, M. S. (2012). Effects of oil palm plantation development on peat physical properties of secondary peat swamp forest in Igan, Sarawak, Malaysia [Thesis, Universiti Putra Malaysia].
Gromikora, N., Yahya, S., & suwarto. (2015). Permodelan Pertumbuhan dan Produksi Kelapa Sawit pada Berbagai Taraf Penunasan Pelepah. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 42(3). https://doi.org/10.24831/jai.v42i3.9179
Guillaume, T., Holtkamp, A. M., Damris, M., Brümmer, B., & Kuzyakov, Y. (2016). Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture, Ecosystems & Environment, 232, 110-118. https://doi.org/10.1016/j.agee.2016.07.002
Hajrul, S., Muliadi, M., & Adriat, R. (2019). Analisis Data Curah Hujan Kabupaten Ketapang dan Kota Pontianak Menggunakan Transformasi Wavelet. PRISMA FISIKA, 7(2). https://doi.org/10.26418/pf.v7i2.34022
Harahap, I. Y., & Darmosarkoro, W. (1999). Pendugaan kebutuhan air untuk pertumbuhan kelapa sawit di lapang dan aplikasinya dalam pengembangan sistem irigasi. Jurnal Penelitian Kelapa Sawit, 7(2), 87-104. https://pis.iopri.co.id/upload/journalIOPRI/files/230822105956.pdf
Henson, I. E., & Mohd Tayeb, M. (2004). Seasonal variation in yield and developmental processes in an oil palm density trial on a peat soil: 1. Yield and bunch number components. Journal of Oil Palm Research, 16(2), 106-120. https://jopr.mpob.gov.my/seasonal-variation-in-yield-and-developmental-processes-in-an-oil-palm-density-trial-on-a-peat-soil-1-yield-and-bunch-number-components/
Hergoualc’h, K., Hendry, D. T., Murdiyarso, D., & Verchot, L. V. (2017). Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry, 135(3), 203-220. https://doi.org/10.1007/s10533-017-0363-4
Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053-1071. https://doi.org/10.5194/bg-9-1053-2012
Kunarso, A., Bonner, M. T. L., Blanch, E. W., & Grover, S. (2022). Differences in Tropical Peat Soil Physical and Chemical Properties Under Different Land Uses: A Systematic Review and Meta-analysis. Journal of Soil Science and Plant Nutrition, 22(4), 4063-4083. https://doi.org/10.1007/s42729-022-01008-2
Martinez, P., Buurman, P., do Nascimento, D. L., Almquist, V., & Vidal-Torrado, P. (2021). Substantial changes in podzol morphology after tree‐roots modify soil porosity and hydrology in a tropical coastal rainforest. Plant and Soil, 463(1), 77-95. https://doi.org/10.1007/s11104-021-04896-y
Maysarah, S., Nugroho, Y., & Susilawati, S. (2021). Analisis Sifat Fisika Tanah pada Lahan Gambut di Kecamatan Liang Anggang Kota Banjarbaru Provinsi Kalimantan Selatan [Analysis of Soil Physical Properties on Peatlands in Liang Anggang District, Banjarbaru City, South Kalimantan Province]. Jurnal Sylva Scienteae, 4(1), 166-173. https://doi.org/10.20527/jss.v4i1.3104
Megayanti, L., Zurhalena, Z., Junedi, H., & Fuadi, N. A. (2022). Kajian beberapa sifat fisika tanah yang ditanami kelapa sawit pada umur dan kelerengan yang berbeda (Studi Kasus Perkebunan Sawit Kelurahan Simpang Tuan, Kecamatan Mendahara Ulu,Tanjung Jabung Timur). Jurnal Tanah dan Sumberdaya Lahan, 9(2), 413-420. https://doi.org/10.21776/ub.jtsl.2022.009.2.22
Melling, L., Goh, K. J., Chaddy, A., & Hatano, R. (2014). Soil CO2 Fluxes from Different Ages of Oil Palm in Tropical Peatland of Sarawak, Malaysia. In A. E. Hartemink & K. McSweeney (Eds.), Soil Carbon (pp. 447-455). Springer International Publishing. https://doi.org/10.1007/978-3-319-04084-4_44
Menberu, M. W., Marttila, H., Ronkanen, A.-K., Haghighi, A. T., & Kløve, B. (2021). Hydraulic and Physical Properties of Managed and Intact Peatlands: Application of the Van Genuchten-Mualem Models to Peat Soils. Water Resources Research, 57(7), e2020WR028624. https://doi.org/10.1029/2020WR028624
Minasny, B., & McBratney, A. B. (2018). Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69(1), 39-47. https://doi.org/10.1111/ejss.12475
Nasution, H., Yusfaneti, Y., & Saat, A. (2023). The Relationship Between Peat Water Content to Physical Properties of Peat at Various Ages of oil Palm Plant and Year Products in Mekar Jaya Village. Attractive : Innovative Education Journal, 5(1), 437-446. https://doi.org/10.51278/aj.v5i1.720
Osaki, M., Nursyamsi, D., Noor, M., Wahyunto, & Segah, H. (2016). Peatland in Indonesia. In M. Osaki & N. Tsuji (Eds.), Tropical Peatland Ecosystems (pp. 49-58). Springer Japan. https://doi.org/10.1007/978-4-431-55681-7_3
Page, S. E. (2024). Lowland Tropical Peatlands–A Brief Review of Their Important Role in the Global Carbon Cycle and Biodiversity Support. Media Konservasi, 29(2), 165-165. https://doi.org/10.29244/medkon.29.2.165
Page, S. E., & Baird, A. J. (2016). Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41(Volume 41, 2016), 35-57. https://doi.org/10.1146/annurev-environ-110615-085520
Pérez-Sato, M., Gómez-Gutiérrez, Á., López-Valdez, F., Ayala-Niño, F., Soni-Guillermo, E., González-Graillet, M., & Pérez-Hernández, H. (2023). Soil physicochemical properties change by age of the oil palm crop. Heliyon, 9(6), e16302. https://doi.org/10.1016/j.heliyon.2023.e16302
Rahmawati, R., Penyang, P., Firdara, E. K., Rosdiana, R., & Putir, P. E. (2022). Changes in Physical and Chemical Properties of Peat in Various Ages of Oil Palm Plant In East Kotawaringin District. Devotion: Journal of Research and Community Service, 3(12), 1132-1148. https://doi.org/10.36418/dev.v3i12.234
Ratai, J., Teh, C. B. S., Tan, N. P., Mohidin, H., Goh, K. J., Sangok, F. E., & Melling, L. (2024). Tropical peat soil changes across successive oil palm generations in Sarawak, Malaysia. Heliyon, 10(18), e37754. https://doi.org/10.1016/j.heliyon.2024.e37754
Röll, A., Niu, F., Meijide, A., Hardanto, A., Hendrayanto, Knohl, A., & Hölscher, D. (2015). Transpiration in an oil palm landscape: effects of palm age. Biogeosciences, 12(19), 5619-5633. https://doi.org/10.5194/bg-12-5619-2015
Rosyadi. (2023). Implementasi Model Green Economic pada Kegiatan Replanting Kebun Kelapa Sawit (Studi Kasus Kabupaten Ketapang Kalimantan Barat). Jurnal Ilmiah Ekonomi Bisnis, 28(2), 225-241. https://doi.org/10.35760/eb.2023.v28i2.7325
Safitri, L., Hermantoro, Purboseno, S., Kautsar, V., Y.Wijayanti, & Ardiyanto, A. (2018). Development of Oil Palm Water Balance Tool for Predicting Water Content Distribution in Root Zone. International Journal of Engineering Technology and Sciences, 5(2), 38-49. https://doi.org/10.15282/ijets.v5i2.1393
Setia Budi, F., Daryono, D., Kusuma, & Rais, A. F. (2023). Analysis Of The Monsoon Contribution In Forming Rainfall Characteristics in Kalimantan As An Effort In Formulating Flood Disaster Mitigation Policies To Support National Security. International Journal of Progressive Sciences and Technologies, 37(1). https://ijpsat.org/index.php/ijpsat/article/view/5119
Suryadi, S., Hadi Dharmawan, A., & Barus, B. (2021). Expansion and Conflict at Oil Palm Plantations: A Case in Terantang Manuk Village, Pelalawan District, Riau. Sodality: Jurnal Sosiologi Pedesaan, 8(3), 167-178. https://doi.org/10.22500/8202031914
Sutikno, S., Rinaldi, Yusa, M., Nasrul, B., Yesi, Chairul, . . . Ardi, M. G. (2023). Water Management for Integrated Peatland Restoration in Pulau Tebing Tinggi PHU, Riau. In K. Mizuno, O. Kozan, & H. Gunawan (Eds.), Vulnerability and Transformation of Indonesian Peatlands (pp. 161-183). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0906-3_9
Suwondo, Darmadi, Roza, D., Murdiya, F., Oktarianda, R., & Risaundi, D. D. (2023). Mitigation of wildlife disturbance at oil and gas industry electrical facilities in Riau Province, Indonesia. Biodiversitas Journal of Biological Diversity, 24(12). https://doi.org/10.13057/biodiv/d241253
Tao, Z., Chen, G., Wang, X., & Siddique, K. H. M. (2023). Root water uptake model shows age-related water uptake patterns of apple trees on the Chinese Loess Plateau. Journal of Hydrology: Regional Studies, 50, 101594. https://doi.org/10.1016/j.ejrh.2023.101594
Tinuntun, R. S. T., Dewi, W. S., Mujiyo, M., Herawati, A., Herdiansyah, G., Sumani, S., . . . Kotroczó, Z. (2025). Pedotransfer functions for soil organic carbon stock and soil porosity interpretation in diverse palm oil plantation soils. Sains Tanah Journal of Soil Science and Agroclimatology, 22(1), 13. https://doi.org/10.20961/stjssa.v22i1.93460
Utami, S. R., Kurniawan, S., Agustina, C., & Corre, M. D. (2021). Soil macroporosity, physical properties and nutrient leaching after forest conversion to rubber and oil palm plantation in an Acrisol of Jambi, Indonesia. Journal of Degraded and Mining Lands Management, 9(1), 3155-3163. https://doi.org/10.15243/jdmlm.2021.091.3155
Walczak, R., Rovdan, E., & Witkowska-Walczak, B. (2002). Water retention characteristics of peat and sand mixtures [journal article]. International Agrophysics, 16(2), 161-165. http://www.international-agrophysics.org/Water-retention-characteristics-of-peat-and-sand-mixtures,106790,0,2.html
Word, C. S., McLaughlin, D. L., Strahm, B. D., Stewart, R. D., Varner, J. M., Wurster, F. C., . . . Link, N. T. (2022). Peatland drainage alters soil structure and water retention properties: Implications for ecosystem function and management. Hydrological Processes, 36(3), e14533. https://doi.org/10.1002/hyp.14533
Xu, J., Morris, P. J., Liu, J., & Holden, J. (2018). PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. CATENA, 160, 134-140. https://doi.org/10.1016/j.catena.2017.09.010
Refbacks
- There are currently no refbacks.









.png)





