Biochar-assisted nitrogen reduction improves resource efficiency at the expense of rice yield

Nowrose Jahan Lipi, Md. Harun-Or- Rashid, Swadesh Chandra Samanta, Muhammad Maniruzzaman, Md. Abdul Kader, Shamim Mia

Abstract

Nitrogen (N) is the most essential nutrient element for improving crop yield. However, urea, its most common form, is highly prone to losses, especially in flooded rice fields, which reduces N use efficiency (NUE) and contributes to environmental degradation. Here, a field experiment was conducted to examine the yield and growth performance of Aman rice, as well as to estimate NUE using different organic amendments and inorganic N sources. The treatments consisted of two factors: a) organic amendments- waste biochar, sawdust biochar, cow dung, and control, and b) N application rate- control (0), 50%, and 100% of the recommended rate. Overall, waste biochar performed better than sawdust and cow dung. Waste biochar with 100% of the recommended rate of urea application provided the highest grain (4.65 t ha-1) and straw yield (6.72 t ha-1). However, waste biochar with 50% recommended urea application provided the best NUE, i.e., agronomic N use efficiency (46 kg rice grain kg-1 N applied), physiological N use efficiency (28 kg rice grain kg-1 N uptake), and apparent N recovery (61%). The relatively higher NUE in treatments with organic amendments and half the recommended N rate; suggests a trade-off between improved NUE and rice grain yield. The enhanced NUE was possibly manifested by retaining more N in the reactive sites of soil organic matter and its uptake in the plant. Altogether, our results provide insights into NUE in rice cultivation systems after application of diverse organic matters. 

Keywords

Apparent Nitrogen recovery; Biochar properties; Inorganic fertilizer; Organic amendments; Physiological Nitrogen Use Efficiency

Full Text:

PDF

References

Ahmed, M., Jaffar, M. T., Ahmad, Z., Naveed, M., Javed, S. A., Asad, M. S., . . . Zhang, J. (2025). Potential of Organic Amendments as a Sustainable Strategy to Enhance Rice Yield by Improving Nutrient Use Efficiency and Physiological Performance in Alkaline Soil. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-025-11900-7

Ahmed, N., Basit, A., Bashir, S., Bashir, S., Bibi, I., Haider, Z., . . . Alotaibi, S. S. (2021). Effect of acidified biochar on soil phosphorus availability and fertilizer use efficiency of maize (Zea mays L.). Journal of King Saud University-Science, 33(8), 101635. https://doi.org/10.1016/j.jksus.2021.101635

APHA. (2012). Standard methods for the examination of water and wastewater (E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri, Eds. 22nd ed.). American Public Health Association, American Water Works Association, Water Environment Federation.

Awad, Y. M., Wang, J., Igalavithana, A. D., Tsang, D. C. W., Kim, K.-H., Lee, S. S., & Ok, Y. S. (2018). Chapter One - Biochar Effects on Rice Paddy: Meta-analysis. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 148, pp. 1-32). Academic Press. https://doi.org/10.1016/bs.agron.2017.11.005

Baquy, M. A.-A., Mamun, M. A. A., Mia, S., Alam, M. M., Khan, M. S. H., & Rahman, S. M. (2022). Biochar research advancement in Bangladesh: challenges and opportunities of biochar in improving soil health. Sains Tanah Journal of Soil Science and Agroclimatology, 19(2), 15. https://doi.org/10.20961/stjssa.v19i2.59758

Bhatta Kaudal, B., & Weatherley, A. J. (2018). Agronomic effectiveness of urban biochar aged through co-composting with food waste. Waste Management, 77, 87-97. https://doi.org/10.1016/j.wasman.2018.04.042

BRRI. (2016). Bangladesh Rice Knowledge Bank. Bangladesh Rice Research Institute. https://knowledgebank-brri.org/

Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management. AMBIO: A Journal of the Human Environment, 31(2), 132-140, 139. https://doi.org/10.1579/0044-7447-31.2.132

Chen, X., Yang, S.-H., Jiang, Z.-W., Ding, J., & Sun, X. (2021). Biochar as a tool to reduce environmental impacts of nitrogen loss in water-saving irrigation paddy field. Journal of Cleaner Production, 290, 125811. https://doi.org/10.1016/j.jclepro.2021.125811

Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12(12), 989-994. https://doi.org/10.1038/s41561-019-0484-6

De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Production and characterization of a value added biochar mix using seaweed, rice husk and pine sawdust: A parametric study. Journal of Cleaner Production, 200, 641-656. https://doi.org/10.1016/j.jclepro.2018.08.002

Govindasamy, P., Muthusamy, S. K., Bagavathiannan, M., Mowrer, J., Jagannadham, P. T. K., Maity, A., . . . Tiwari, G. (2023). Nitrogen use efficiency—a key to enhance crop productivity under a changing climate [Review]. Frontiers in Plant Science, Volume 14 - 2023. https://doi.org/10.3389/fpls.2023.1121073

Guo, J., Hu, X., Gao, L., Xie, K., Ling, N., Shen, Q., . . . Guo, S. (2017). The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Scientific Reports, 7(1), 2101. https://doi.org/10.1038/s41598-017-02338-3

Huq, S. M. I., & Shoaib, J. U. M. (2013). The Soils of Bangladesh. Springer Dordrecht. https://doi.org/10.1007/978-94-007-1128-0

Iqbal, A., He, L., Ali, I., Ullah, S., Khan, A., Akhtar, K., . . . Jiang, L. (2021). Co-incorporation of manure and inorganic fertilizer improves leaf physiological traits, rice production and soil functionality in a paddy field. Scientific Reports, 11(1), 10048. https://doi.org/10.1038/s41598-021-89246-9

Iqbal, A., He, L., Khan, A., Wei, S., Akhtar, K., Ali, I., . . . Jiang, L. (2019). Organic Manure Coupled with Inorganic Fertilizer: An Approach for the Sustainable Production of Rice by Improving Soil Properties and Nitrogen Use Efficiency. Agronomy, 9(10), 651. https://doi.org/10.3390/agronomy9100651

Jackson, M. L. (1973). Soil Chemical Analysis: Advanced Course (2nd ed.). Prentice- Hall of India Private Limited, New Delhi.

Jackson, M. L. (2005). Soil Chemical Analysis: Advanced Course : a Manual of Methods Useful for Instruction and Research in Soil Chemistry, Physical Chemistry of Soils, Soil Fertility, and Soil Genesis. UW-Madison Libraries Parallel Press.

Jangir, C. K., Kumar, S., & Meena, R. S. (2019). Significance of soil organic matter to soil quality and evaluation of sustainability. Sustainable agriculture, 357-381. https://www.researchgate.net/publication/332240887_Significance_of_Soil_Organic_Matter_to_Soil_Quality_and_Evaluation_of_Sustainability

Jia, Y., Hu, Z., Ba, Y., & Qi, W. (2021). Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chemical and Biological Technologies in Agriculture, 8(1), 3. https://doi.org/10.1186/s40538-020-00205-4

Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078

Lan, C., Xu, H., Qin, B., Li, J., Zhang, B., Zou, J., . . . Lin, W. (2026). Optimizing water and nitrogen management to balance yield and nitrogen loss in mechanically harvested low-stubble ratoon rice. Field Crops Research, 336, 110216. https://doi.org/10.1016/j.fcr.2025.110216

Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., . . . Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of The Total Environment, 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204

Liu, J., Zhang, M., Pan, M., Yuan, H., Sun, S., Sun, Q., . . . Chen, W. (2025). Pig Manure and Biochar Reduce Nitrogen Availability and Rice Yield Compared to Mineral Fertilization in a Three-Year Field Experiment. Agronomy, 15(9), 2242. https://doi.org/10.3390/agronomy15092242

Liu, Y., Li, H., Hu, T., Mahmoud, A., Li, J., Zhu, R., . . . Jing, P. (2022). A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis. Science of The Total Environment, 830, 154792. https://doi.org/10.1016/j.scitotenv.2022.154792

Mia, S., Uddin, M. E., Kader, M. A., Ahsan, A., Mannan, M. A., Hossain, M. M., & Solaiman, Z. M. (2018). Pyrolysis and co-composting of municipal organic waste in Bangladesh: A quantitative estimate of recyclable nutrients, greenhouse gas emissions, and economic benefits. Waste Management, 75, 503-513. https://doi.org/10.1016/j.wasman.2018.01.038

Mia, S., Uddin, N., Mamun Hossain, S. A. A., Amin, R., Mete, F. Z., & Hiemstra, T. (2015). Production of Biochar for Soil Application: A Comparative Study of Three Kiln Models. Pedosphere, 25(5), 696-702. https://doi.org/10.1016/S1002-0160(15)30050-3

Oladele, S., Adeyemo, A., Awodun, M., Ajayi, A., & Fasina, A. (2019). Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, 8(3), 295-308. https://doi.org/10.1007/s40093-019-0251-0

Oyetunji, O., Bolan, N., & Hancock, G. (2022). A comprehensive review on enhancing nutrient use efficiency and productivity of broadacre (arable) crops with the combined utilization of compost and fertilizers. Journal of Environmental Management, 317, 115395. https://doi.org/10.1016/j.jenvman.2022.115395

Piash, M. I., Iwabuchi, K., Itoh, T., & Uemura, K. (2021). Release of essential plant nutrients from manure- and wood-based biochars. Geoderma, 397, 115100. https://doi.org/10.1016/j.geoderma.2021.115100

Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D. W., Whitmore, A. P., . . . Goulding, K. W. T. (2011). Soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 36, S72-S87. https://doi.org/10.1016/j.foodpol.2010.11.025

Rahayu, Syamsiyah, J., Cahyani, V. R., & Fauziah, S. K. (2019). The Effects of Biochar and Compost on Different Cultivars of Shallots (Allium ascalonicum L.) Growth and Nutrient Uptake in Sandy Soil Under Saline Water. Sains Tanah Journal of Soil Science and Agroclimatology, 16(2), 13. https://doi.org/10.20961/stjssa.v16i2.34209

Rehrah, D., Bansode, R. R., Hassan, O., & Ahmedna, M. (2016). Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. Journal of Analytical and Applied Pyrolysis, 118, 42-53. https://doi.org/10.1016/j.jaap.2015.12.022

Sadatshojaei, E., Wood, D. A., & Rahimpour, M. R. (2021). Potential and Challenges of Carbon Sequestration in Soils. In Applied Soil Chemistry (pp. 1-21). https://doi.org/10.1002/9781119711520.ch1

Septiana, L. M., Djajakirana, G., & Darmawan. (2018). Characteristics of Biochars from Plant Biomass Wastes at Low-Temperature Pyrolysis. Sains Tanah Journal of Soil Science and Agroclimatology, 15(1), 14. https://doi.org/10.15608/stjssa.v15i1.21618

Sharma, L. K., & Bali, S. K. (2018). A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability, 10(1), 51. https://doi.org/10.3390/su10010051

Shi, G., Hou, R., Li, T., Fu, Q., Chen, Q., Xue, P., & Yang, X. (2024). Effects of biochar on the transformation and utilization of nitrogen fertilizer in the black soil region of Northeast China. Science of The Total Environment, 953, 176218. https://doi.org/10.1016/j.scitotenv.2024.176218

Singh, D., Mishra, A. K., Patra, S., Mariappan, S., Singh, N., & Kar, S. K. (2023). Spatial variability of soil hydraulic and physical properties in erosive sloping agricultural fields. Water Science and Engineering, 16(1), 57-66. https://doi.org/10.1016/j.wse.2022.10.001

Sukartono, Kusumo, B. H., Suwardji, S., Bakti, A. A., Mahrup, Susilowati, L. E., & Fahrudin. (2022). Influence of biochar amendments on the soil quality indicators of sandy loam soils under cassava–peanut cropping sequence in the semi-arid tropics of Northern Lombok, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 19(2), 6. https://doi.org/10.20961/stjssa.v19i2.65452

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3

Tyagi, J., Ahmad, S., & Malik, M. (2022). Nitrogenous fertilizers: impact on environment sustainability, mitigation strategies, and challenges. International Journal of Environmental Science and Technology, 19(11), 11649-11672. https://doi.org/10.1007/s13762-022-04027-9

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. https://journals.lww.com/soilsci/fulltext/1934/01000/an_examination_of_the_degtjareff_method_for.3.aspx

Yadav, V., Karak, T., Singh, S., Singh, A. K., & Khare, P. (2019). Benefits of biochar over other organic amendments: Responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Industrial Crops and Products, 131, 96-105. https://doi.org/10.1016/j.indcrop.2019.01.045

Yuan, X., Gu, X., Liang, R., Ban, G., Ma, L., He, T., & Wang, Z. (2024). Comparing combined application of biochar and nitrogen fertilizer in paddy and upland soils: Processes, enhancement strategies, and agricultural implications. Science of The Total Environment, 933, 173160. https://doi.org/10.1016/j.scitotenv.2024.173160

Refbacks

  • There are currently no refbacks.